Skip to main content
Log in

Active Control of Thermo-mechanical Buckling of Composite Laminated Plates Using Piezoelectric Actuators

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

This paper is concerned with the active control of thermo-mechanical buckling of composite laminated plates using piezoelectric facesheets as actuators. The four-variable trigonometric shear deformation theory and Hamilton’s principle are applied to formulate the governing equation of structural system. The temperature feedback control strategy is proposed to conduct the active control of thermal-mechanical buckling. The simulation results show that the thermo-mechanical buckling of composite laminated plates can be effectively controlled by the presented control method. With a specific control gain, the critical mechanical buckling load can remain constant at different temperatures. The effects of geometric parameters, fiber angle, stacking sequence, position of piezoelectric layer and boundary conditions on the active control of thermo-mechanical buckling are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akavci SS. Buckling and Free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation. J Reinf Plast Compos. 2007;26(18):1907–19.

    Article  Google Scholar 

  2. Akavci SS, Tanrikulu AH. Buckling and free vibration analyses of laminated composite plates by using two new hyperbolic shear-deformation theories. Mech Compos Mater. 2008;44(2):145–54.

    Article  Google Scholar 

  3. Adim B, Daouadji TH, Rabahi A. A simple higher-order shear deformation theory for mechanical behavior of laminated composite plates. Int J Adv Struct Eng. 2016;8(2):1–15.

    Article  Google Scholar 

  4. Adim B, Daouadji TH, Abbes B, et al. Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory. Mech Ind. 2016;17(5):512.

    Article  Google Scholar 

  5. Belkacem A, Tahar HD, Abderrezak R, et al. Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions. Struct Eng Mech. 2018;66(6):761–9.

    Google Scholar 

  6. Noor AK, Peters JM. Thermomechanical buckling of multilayered composite plates. J Eng Mech. 1992;118(2):351–66.

    Article  Google Scholar 

  7. Sai Ram KS, Sinha PK. Hygrothermal effects on the buckling of laminated composite plates. Compos Struct. 1992;21(4):233–47.

    Article  Google Scholar 

  8. Yin WL. Thermomechanical buckling of delaminated composite laminates. Int J Solids Struct. 1998;35(20):2639–53.

    Article  Google Scholar 

  9. Bai RX, Chen HR. Nonlinear buckling behavior of damaged composite sandwich plates considering the effect of temperature-dependent thermal and mechanical properties. Acta Mech Solida Sin. 2001;14(2):155–60.

    Google Scholar 

  10. Shariat S, Eslami MR. Buckling of thick functionally graded plates under mechanical and thermal loads. Compos Struct. 2007;78(3):433–9.

    Article  Google Scholar 

  11. Pandey R, Shukla KK, Jain A. Thermoelastic stability analysis of laminated composite plates: an analytical approach. Commun Nonlinear Sci Numer Simul. 2009;14(4):1679–99.

    Article  Google Scholar 

  12. Zhao X, Lee YY, Liew KM. Mechanical and thermal buckling analysis of functionally graded plates. Compos Struct. 2009;90(2):161–71.

    Article  Google Scholar 

  13. Singh S, Singh J, Shukla KK. Buckling of laminated composite plates subjected to mechanical and thermal loads using meshless collocations. J Mech Sci Technol. 2013;27(2):327–36.

    Article  Google Scholar 

  14. Bakora, Ahmed,Tounsi, et al. Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations. Struct Eng Mech. 2015;56(1):85–106.

  15. Tian X, Yao D, Li Q. Thermal buckling response and fracture analysis for delaminated fiber reinforced composite plates under thermo-mechanical coupling. J Compos Mater. 2018;52(27):3715–30.

    Article  Google Scholar 

  16. Zhu CS, Fang XQ, Liu JX. A new approach for smart control of size-dependent nonlinear free vibration of viscoelastic orthotropic piezoelectric doubly-curved nanoshells. Appl Math Model. 2020;77:137–68.

    Article  MathSciNet  Google Scholar 

  17. Zhu CS, Fang XQ, Liu JX, Li HY. Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells. Eur J Mech A/Solids. 2017;66:423–32.

    Article  MathSciNet  Google Scholar 

  18. Kapuria S, Achary GGS. Nonlinear zigzag theory for electrothermomechanical buckling of piezoelectric composite and sandwich plates. Acta Mech. 2006;184(1–4):61–76.

    Article  Google Scholar 

  19. Bohlooly M, Mirzavand B. Closed form solutions for buckling and postbuckling analysis of imperfect laminated composite plates with piezoelectric actuators. Compos B. 2015;72:21–9.

    Article  Google Scholar 

  20. Panahandeh-Shahraki D, Mirdamadi HR, Vaseghi O. Thermoelastic buckling analysis of laminated piezoelectric composite plates. Int J Mech Mater Des. 2015;11(4):371–85.

    Article  Google Scholar 

  21. Bohlooly M, Mirzavand B. Thermomechanical buckling of hybrid cross-ply laminated rectangular plates. Adv Compos Mater. 2017;26(5):407–26.

    Article  Google Scholar 

  22. Li J, Li F, Narita Y. Active control of thermal buckling and vibration for a sandwich composite laminated plate with piezoelectric fiber-reinforced composite actuator facesheets. J Sandwich Struct Mater. 2019;21(7):2563–81.

    Article  Google Scholar 

  23. Li J, Li F. Active control of thermal buckling for plates using a temperature feedback control method. Smart Mater Struct. 2019;28(4):045001.

    Article  Google Scholar 

  24. Sayyad AS, Ghugal YM. On the free vibration of angle-ply laminated composite and soft core sandwich plates. J Sandwich Struct Mater. 2017;19(6):679–711.

    Article  Google Scholar 

  25. Li J, Narita Y. Vibration suppression for laminated cylindrical plates with arbitrary edge conditions. J Vib Control. 2013;19(4):626–40.

    Article  MathSciNet  Google Scholar 

  26. Whitney JM, Ashton JE. Effect of environment on the elastic response of layered composite plates. AIAA J. 1971;9(9):1708–13.

    Article  Google Scholar 

  27. Patel B, Ganapathi M, Makhecha D. Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory. Compos Struct. 2002;56:25–34.

    Article  Google Scholar 

  28. Shen HS. Thermal postbuckling of shear-deformable laminated plates with piezoelectric actuators. Compos Sci Technol. 2001;61(13):1931–43.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12072084 and 11761131006), the Fundamental Research Funds for the Central Universities, and the Ph.D. Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities (No. 3072020GIP0206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinqiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xue, Y., Yuan, W. et al. Active Control of Thermo-mechanical Buckling of Composite Laminated Plates Using Piezoelectric Actuators. Acta Mech. Solida Sin. 34, 369–380 (2021). https://doi.org/10.1007/s10338-020-00209-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-020-00209-5

Keywords

Navigation