Skip to main content
Log in

Exploitation of Digestate from Thermophilic and Mesophilic Anaerobic Digesters Fed with Fermentable Food Waste Using the MFC Technology

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study reports on the investigation of the digestate treatment using microbial fuel cell (MFC) technology. The effluents from a thermophilic and a mesophilic anaerobic digester, fed with fermentable household food waste (FORBI), were characterized and used as the feed in four air–cathode MFC units. The chemical oxygen demand (COD) removal ranged from 80% to 90% and was achieved within the first 24 h to 48 h of each cycle operation, although electricity was still produced for more than 190 h. The electrochemical characterization of the cells showed low internal resistances (10–50 Ω) of the units for both inlets. The maximum power output of the mesophilic fed cells (~ 0.24 mW) is lower in comparison with the respective power achieved from the thermophilic fed cells (~ 0.42 mW). The work demonstrated the potential of using MFC technology to further treat and exploit anaerobic digestates which are produced from FORBI.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. (FAO) FaAO. http://www.fao.org/about/en/.

  2. Mak, T.M.W., Xiong, X., Tsang, D.C.W., Yu, I.K.M., Poon, C.S.: Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresour Technol 297, 122497 (2020)

    Article  Google Scholar 

  3. UN news. https://news.un.org/en/story/2013/12/456912

  4. Dahiya, S., Kumar, A.N., Shanthi Sravan, J., Chatterjee, S., Sarkar, O., Mohan, S.V.: Bioresour Technol 248, 2–12 (2018)

    Article  Google Scholar 

  5. Sharma, P., Gaur, V.K., Kim, S.-H., Pandey, A.: Microbial strategies for bio-transforming food waste into resources. Bioresour Technol 299, 122580 (2020)

    Article  Google Scholar 

  6. Ng, H.S., Kee, P.E., Yim, H.S., Chen, P.-T., Wei, Y.-H., Chi-Wei, L.J.: Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresour Technol 302, 122889 (2020)

    Article  Google Scholar 

  7. Zhang, J., Hu, Q., Qu, Y., Dai, Y., He, Y., Wang, C.-H., et al.: Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production. Appl Energy 257, 113988 (2020)

    Article  Google Scholar 

  8. Antonopoulou, G., Ntaikou, I., Pastore, C., di Bitonto, L., Bebelis, S., Lyberatos, G.: An overall perspective for the energetic valorization of household food waste using microbial fuel cell technology of its extract, coupled with anaerobic digestion of the solid residue. Appl. Energy 242, 1064–1073 (2019)

    Article  Google Scholar 

  9. Tremouli, A., Karydogiannis, I., Pandis, P.K., Papadopoulou, K., Argirusis, C., Stathopoulos, V.N., et al.: Bioelectricity production from fermentable household waste extract using a single chamber microbial fuel cell. Energy Procedia. 161, 2–9 (2019)

    Article  Google Scholar 

  10. Chatzikonstantinou, D., Tremouli, A., Papadopoulou, K., Kanellos, G., Lampropoulos, I., Lyberatos, G.: Bioelectricity production from fermentable household waste in a dual-chamber microbial fuel cell. Waste Manag Res J Int Solid Wastes Public Cleansing Assoc ISWA 36, 1037–1042 (2018)

    Article  Google Scholar 

  11. Michalopoulos, I., Lytras, G.M., Mathioudakis, D., Lytras, C., Goumenos, A., Zacharopoulos, I., et al.: hydrogen and methane production from food residue biomass product (FORBI). Waste Biomass Valorization 11, 1647–1655 (2019)

    Article  Google Scholar 

  12. Ntaikou, I., Menis, N., Alexandropoulou, M., Antonopoulou, G., Lyberatos, G.: Valorization of kitchen biowaste for ethanol production via simultaneous saccharification and fermentation using co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Biores. Technol. 263, 75–83 (2018)

    Article  Google Scholar 

  13. Papanikola, K., Papadopoulou, K., Tsiliyannis, C., Fotinopoulou, I., Katsiampoulas, A., Chalarakis, E., et al.: Food residue biomass product as an alternative fuel for the cement industry. Environ. Sci. Pollut. Res. Int. 26, 35555–35564 (2019)

    Article  Google Scholar 

  14. Zang, Q., Hu, J., Lee, D.J.: Biogas from anaerobic digestion processes: Research updates renewable. Energy 98, 108–119 (2016)

    Article  Google Scholar 

  15. Diamantis, V., Eftaxias, A., Stamatelatou, K., Noutsopoulos, C., Vlachokostas, C., Aivasidis, A.: Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes. Renew Energy 168, 438–447 (2021)

    Article  Google Scholar 

  16. Slepetiene, A., Volungevicius, J., Jurgutis, L., Liaudanskiene, I., Amaleviciute-Volunge, K., Slepetys, J., Ceseviciene, J.: The potential of digestate as a biofertilizer in eroded soils of Lithuania. Waste Manage. 102, 441–451 (2020)

    Article  Google Scholar 

  17. Ioannou-Ttofa, L., Foteinis, S., Moustafa, A.S., Abdelsalam, E., Samer, M., Fatta-Kassinos, D.: Life cycle assessment of household biogas production in Egypt: Influence of digester volume, biogas leakages, and digestate valorization as biofertilizer. J Cleaner Product 286, 125468 (2021)

    Article  Google Scholar 

  18. Cheong, J.C., Lee, J.T.E., Lim, J.W., Song, S., Tan, J.K.N., Chiam, Z.Y., et al.: Closing the food waste loop: Food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao bai cai (Brassica rapa). Sci Tot Environ 715, 136789 (2020)

    Article  Google Scholar 

  19. Liu, J., Huang, S., Chen, K., Wang, T., Mei, M., Li, J.: Preparation of biochar from food waste digestate: Pyrolysis behavior and product properties. Bioresour Technol 302, 122841 (2020)

    Article  Google Scholar 

  20. Sheets, J.P., Yang, L., Ge, X., Wang, Z., Li, Y.: Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. Waste Manage. 44, 94–115 (2015)

    Article  Google Scholar 

  21. Monlau, F., Francavilla, M., Sambusiti, C., Antoniou, N., Solhy, A., Libutti, A., et al.: Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment. Appl Energy 169, 652–62 (2016)

    Article  Google Scholar 

  22. Kim, T., An, J., Jang, J.K., Chang, I.S.: Coupling of anaerobic digester and microbial fuel cell for COD removal and ammonia recovery. Bioresour Technol. 195, 217–222 (2015)

    Article  Google Scholar 

  23. Martinez, S.M., Di Lorenzo, M.: Electricity generation from untreated fresh digestate with a cost-effective array of floating microbial fuel cells. Chem. Eng. Sci. 198, 108–116 (2019)

    Article  Google Scholar 

  24. Di Palma, L., Geri, A., Maccioni, M., Paoletti, C., Petroni, G., Di Battista, A., et al.: Experimental assessment of a process including microbial fuel cell for nitrogen removal from digestate of anaerobic treatment of livestock manure and agricultural wastes. Chem. Eng. Trans. 43, 2239–2244 (2015)

    Google Scholar 

  25. Di Domenico, E.G., Petroni, G., Mancini, D., Geri, A., Di Palma, L., Ascenzioni, F.: Development of Electroactive and anaerobic ammonium-oxidizing (Anammox) biofilms from digestate in microbial fuel cells. Biomed. Res. Int. (2015). https://doi.org/10.1155/2015/351014

    Article  Google Scholar 

  26. Zhuang, L., Zhou, S., Wang, Y., Liu, C., Geng, S.: Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells. Biosens. Bioelectron. 24, 3652–3656 (2009)

    Article  Google Scholar 

  27. APHA/AWWA/WEF. Standard methods for the examination of water and wastewater. Stand Methods (2012)

  28. Boe, I.N., Lovrien, R.E.: Energy reserves and storage polymers in intact bacteria analyzed by metabolic calorimetry. Thermochim. Acta 172, 115–122 (1990)

    Article  Google Scholar 

  29. Michalopoulos, I., Chatzikonstantinou, D., Mathioudakis, D., Vaiopoulos, I., Tremouli, A., Georgiopoulou, M., et al.: Valorization of the Liquid Fraction of a Mixture of Livestock Waste and Cheese Whey for Biogas Production Through High-rate Anaerobic Co-digestion and for Electricity Production in a Microbial Fuel Cell (MFC). Waste Biomass Valorization 8, 1759–1769 (2017)

    Article  Google Scholar 

  30. Dominguez-Benetton, X., Sevda, S., Vanbroekhoven, K., Pant, D.: The accurate use of impedance analysis for the study of microbial electrochemical systems. Chem. Soc. Rev. 41, 7228–7246 (2012)

    Article  Google Scholar 

  31. Tremouli, Α, Pandis, P.K., Karydogiannis, I., Stathopoulos, V.N., Argirusis, C., Lyberatos, G.: Operation and Electro(chemical) characterization of a microbial fuel cell stack fed with fermentable household waste extract. Global NEST Journal. 21, 253–257 (2019)

    Google Scholar 

  32. Tremouli A, Pandis PK, Kamperidis T, Stathopoulos VN, Argirusis C, Lyberatos G (2019) Performance assessment of a four-air cathode membraneless microbial fuel cell stack for wastewater treatment and energy extraction. E3S Web of Conferences 116:00093

  33. Ramasamy, R.P., Sekar, N.: Electrochemical impedance spectroscopy for microbial fuel cell characterization. J Microb Biochem Technol (2013). https://doi.org/10.4172/1948-5948.S6-004

    Article  Google Scholar 

  34. Wei, B., Tokash, J.C., Zhang, F., Kim, Y., Logan, B.E.: Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells. Electrochim. Acta 89, 45–51 (2013)

    Article  Google Scholar 

  35. Chuka-ogwude, D., Ogbonna, J., Moheimani, N.R.: A review on microalgal culture to treat anaerobic digestate food waste effluent. Algal Research 47, 101841 (2020)

    Article  Google Scholar 

  36. Ruffino, B., Cerutti, A., Campo, G., Scibilia, G., Lorenzi, E., Zanetti, M.: Thermophilic vs. mesophilic anaerobic digestion of waste activated sludge: Modelling and energy balance for its applicability at a full scale WWTP. Renew Energy (2020). https://doi.org/10.1016/j.renene.2020.04.068

    Article  Google Scholar 

  37. Hou, Q., Yang, Z., Chen, S., Pei, H.: Using an anaerobic digestion tank as the anodic chamber of an algae-assisted microbial fuel cell to improve energy production from food waste. Water Res 170, 115305 (2020)

    Article  Google Scholar 

  38. Choi, J.D., Chang, H.N., Han, J.I.: Performance of microbial fuel cell with volatile fatty acids from food wastes. Biotech. Lett. 33, 705–714 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under grant agreement No [862].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Αsimina Tremouli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tremouli, Α., Kamperidis, T., Pandis, P.K. et al. Exploitation of Digestate from Thermophilic and Mesophilic Anaerobic Digesters Fed with Fermentable Food Waste Using the MFC Technology. Waste Biomass Valor 12, 5361–5370 (2021). https://doi.org/10.1007/s12649-021-01414-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01414-0

Keywords

Navigation