Skip to main content
Log in

Primary Metabolism co-Opted for Defensive Chemical Production in the Carabid Beetle, Harpalus pensylvanicus

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

An Author Correction to this article was published on 31 March 2021

This article has been updated

Abstract

Of the approximately one million described insect species, ground beetles (Coleoptera: Carabidae) have long captivated the attention of evolutionary biologists due to the diversity of defensive compounds they synthesize. Produced using defensive glands in the abdomen, ground beetle chemicals represent over 250 compounds including predator-deterring formic acid, which has evolved as a defensive strategy at least three times across Insecta. Despite being a widespread method of defense, formic acid biosynthesis is poorly understood in insects. Previous studies have suggested that the folate cycle of one-carbon (C1) metabolism, a pathway involved in nucleotide biosynthesis, may play a key role in defensive-grade formic acid production in ants. Here, we report on the defensive gland transcriptome of the formic acid-producing ground beetle Harpalus pensylvanicus. The full suite of genes involved in the folate cycle of C1 metabolism are significantly differentially expressed in the defensive glands of H. pensylvanicus when compared to gene expression profiles in the rest of the body. We also find support for two additional pathways potentially involved in the biosynthesis of defensive-grade formic acid, the kynurenine pathway and the methionine salvage cycle. Additionally, we have found an array of differentially expressed genes in the secretory lobes involved in the biosynthesis and transport of cofactors necessary for formic acid biosynthesis, as well as genes presumably involved in the detoxification of secondary metabolites including formic acid. We also provide insight into the evolution of the predominant gene family involved in the folate cycle (MTHFD) and suggest that high expression of folate cycle genes rather than gene duplication and/or neofunctionalization may be more important for defensive-grade formic acid biosynthesis in H. pensylvanicus. This provides the first evidence in Coleoptera and one of a few examples in Insecta of a primary metabolic process being co-opted for defensive chemical biosynthesis. Our results shed light on potential mechanisms of formic acid biosynthesis in the defensive glands of a ground beetle and provide a foundation for further studies into the evolution of formic acid-based chemical defense strategies in insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Arndt E, Beutel RG, Will K (2016) Carabidae Latreille, 1802. In: Beutel RG, Leschen RAB (eds) handbook of zoology. Vol. IV Arthropoda: Insecta, part 38. Coleoptera, beetles. Vol 1: morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim). Walter de Gruyter, Berlin, pp 119–144

    Google Scholar 

  • Arsovski AA, Pradinuk J, Guo XQ, Wang S, Adams KL (2015) Evolution of Cis-regulatory elements and regulatory networks in duplicated genes of Arabidopsis. Plant Physiol 169(4):2982–2091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Attygalle AB, Smedley SR, Meinwald J, Eisner T (1993) Defensive secretion of two notodontid caterpillars (Schizura unicornis, S. badia). J. Chem Ecol. 19(10):2089–2104

  • Attygalle AB, Wu X, Will KW (2006) Biosynthesis of Tiglic, Ethacrylic, and 2-Methylbutyric acids in a Carabid beetle, Pterostichus (Hypherpes) californicus. J Chem Ecol 33(5):963–970

    Google Scholar 

  • Attygalle AB, Xu S, Moore W, McManus R, Gill A, Will K (2020) Biosynthetic origin of benzoquinones in the explosive discharge of the bombardier beetle Brachinus elongatulus. Sci Nat 107:26

    CAS  Google Scholar 

  • Badawy AA (2017) Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res 10:1–20

    CAS  Google Scholar 

  • Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara JM, Manning BD (2016) mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science. 351(6274):728–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57(1):289–300

    Google Scholar 

  • Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527

    CAS  PubMed  Google Scholar 

  • Brosnan ME, Brosnan JT (2016) Formate: the neglected member of one-carbon metabolism. Annu Rev Nutr 36:369–388

    CAS  PubMed  Google Scholar 

  • Brückner A, Parker J (2020) Molecular evolution of gland cell types and chemical interactions in animals in animals. J. Exp. Biol 223:jeb211938

    PubMed  Google Scholar 

  • Carreras CW, Santi DV (1995) The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 64:721–762

    CAS  PubMed  Google Scholar 

  • Carroll N, Pangilinan F, Molloy AM, Troendle J, Mills JL, Kirke PN, Brody LC, Scott JM, Parle-McDermott A (2009) Analysis of the MTHFD1 promoter and risk of neural tube defects. Hum Genet 125(3):247–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    CAS  PubMed  Google Scholar 

  • Chen S, Zhou Y, Taru C, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    PubMed  PubMed Central  Google Scholar 

  • Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson SMW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    PubMed  PubMed Central  Google Scholar 

  • Coppin CW, Jackson CJ, Sutherland T, Hart PJ, Devonshire AL, Russell RJ, Oakeshott JG (2012) Testing the evolvability of an insect carboxylesterase for the detoxification of synthetic pyrethroid insecticides. Insect Biochem Mol Biol 42(5):343–352

    CAS  PubMed  Google Scholar 

  • Deuve T (1993) L'abdomen et les genitalia des femelles de Coleopteres Adephaga. Mém Mus Natl Hist Nat 155:1–184

    Google Scholar 

  • Di Pietro E, Sirois J, Tremblay ML, MacKenzie RE (2002) Mitochondrial NAD-dependent Methylenetetrahydrofolate dehydrogenase-Methenyltetrahydrofolate Cyclohydrolase is essential for embryonic development. Mol Cell Biol 22(12):4158–4166

    PubMed  PubMed Central  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14(9):755–763

    CAS  PubMed  Google Scholar 

  • Eisner T, Aneshansley D, del Campo ML, Eisner M, Frank JH, Deyrup M (2006) Effect of bombardier beetle spray on a wolf spider: repellency and leg autotomy. Chemoecology 16:185–189

    Google Scholar 

  • Eisner T, Meinwald J, Monro A, Ghent R (1961) Defence mechanisms of arthropods— I the composition and function of the spray of the whipscorpion, Mastigoproctus giganteus (Lucas) (Arachnida, Pedipalpida). J Insect Physiol 6(4):272–292

    CAS  Google Scholar 

  • Feyereisen R (2020) Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Mol Phylogenet Evol 143:106695

    CAS  PubMed  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39(web server issue):W29–W37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forsyth DJ (1972) The structure of the pygidial defence glands of Carabidae (Coleoptera). Trans Zool Soc Lond 32:249–309

    Google Scholar 

  • Forsyth DJ (1968) The structure of the defence glands in the Dytiscidae, Noteridae, Haliplidae and Gyrinidae (Coleoptera). Trans R Ent Soc Lond 120:158–181

    Google Scholar 

  • Forsyth DJ (1970) The structure of the defence glands of the Cicindelidae, Amphizoidae, and Hygrobiidae (Insecta: Coleoptera). J Zool Lond 160:51–69

    Google Scholar 

  • Fox JT, Stover PJ (2008) Folate-mediated one-carbon metabolism. Vitam Horm 79:1–44

    CAS  PubMed  Google Scholar 

  • Francke W, Dettner K (2005) Chemical signalling in beetles. In: Schulz S (ed) The chemistry of pheromones and other semiochemicals II. Springer, Berlin, pp 85–166

  • Froese DS, Fowler B, Baumgartner MR (2019) Vitamin B12, folate, and the methionine remethylation cycle- biochemistry, pathways, and regulation. J Inherit Metab Dis 42(4):673–685

    CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29(7):644–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafsson R, Jemth AS, Gustafsson NM, Färnegårdh K, Loseva O, Wiita E, Bonagas N, Dahllund L, Llona-Minguez S, Häggblad M, Henriksson M, Andersson Y, Homan E, Helleday T, Stenmark P (2017) Crystal structure of the emerging Cancer target MTHFD2 in complex with a substrate-based inhibitor. Cancer Res 77(4):937–948

    CAS  PubMed  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512

    CAS  PubMed  Google Scholar 

  • Han Q, Robinson H, Li J (2012) Biochemical identification and crystal structure of kynurenine formamidase from Drosophila melanogaster. Biochem J 446(2):253–260

    CAS  PubMed  Google Scholar 

  • Haque MR, Higashiura A, Nakagawa A, Hirowatari A, Furuya S, Yamamoto K (2019) Molecular structure of a 5,10-methylenetetrahydrofolate dehydrogenase from the silkworm Bombyx mori. FEBS Open Bio 9(4):618–628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartman SC, Buchanan JM (1959) Biosynthesis of the purines. XXVI The identification of the formyl donors of the transformylation reactions. J Biol Chem 234(7):1812–1816

    CAS  PubMed  Google Scholar 

  • Hefetz A, Blum MS (1978a) Biosynthesis and accumulation of formic acid in the poison gland of the carpenter ant Camponotus pensylvanicus. Science 201(4354):454–455

    CAS  PubMed  Google Scholar 

  • Hefetz A, Blum MS (1978b) Biosynthesis of formic acid by the poison glands of formicine ants. Biochim Biophys Acta 543(4):484–496

    CAS  PubMed  Google Scholar 

  • Ivarsson P, Henrikson BI, Stenson JAE (1996) Volatile substances in the pygidial secretion of gyrinid beetles (Coleoptera: Gyrinidae). Chemoecology 7(4):191–193

    CAS  Google Scholar 

  • Jackson CJ, Liu JW, Carr PD, Younus F, Coppin C, Meirelles T, Lethier M, Pandey G, Ollis DL, Russell RJ, Weik M, Oakeshott JG (2013) Structure and function of an insect α-carboxylesterase (αEsterase7) associated with insecticide resistance. Proc Natl Acad Sci U S A 110(25):10177–10182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe JJ, Chrin LR (1979) De novo syntesis of methionine in normal and brugia-infected Aedes aegypti. J Parasitol 65(4):550–554

    CAS  PubMed  Google Scholar 

  • Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, Bork P (2008) eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res 36(Database issue):D250–D254

    CAS  PubMed  Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14(6):587–589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai M, Funakoshi H, Takahashi H, Hayakawa T, Mizuno S, Matsumoto K, Nakamura T (2009) Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol Brain 2:8

    PubMed  PubMed Central  Google Scholar 

  • Kanehisa K, Kawazu K (1982) Fatty acid components of the defensive substances in acid-secreting carabid beetles. Appl Entomol Zool 17(4):460–466

    CAS  Google Scholar 

  • Kanehisa K, Kawazu K (1985) Differences in neutral components of the defensive secretion in formic acid-secreting carabid beetles. Appl Entomol Zool 20(3):299–304

    CAS  Google Scholar 

  • Kanehisa K, Murase M (1977) Comparative study of the pygidial defensive systems of carabid beetles. Appl Entomol Zool 12:225–235

    CAS  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Res 40:D109–D114

    CAS  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    CAS  PubMed  Google Scholar 

  • Kück P, Mayer C, Wägele JW, Misof B (2012) Long Branch effects distort maximum likelihood phylogenies in simulations despite selection of the correct model. PLoS One 7(5):e36593

    PubMed  PubMed Central  Google Scholar 

  • Law CW, Chen Y, Shi W, Smyth GK (2014) Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29

    PubMed  PubMed Central  Google Scholar 

  • Lečić S, Ćurčić S, Vujisić L, Ćurčić B, Ćurčić N, Nikolić Z, Anđelković B, Milosavljević S, Tešević V, Makarov S (2014) Defensive secretions in three ground-beetle species (Insecta: Coleoptera: Carabidae). Ann Zool Fenn 51:285–300

    Google Scholar 

  • Li T, White KP (2003) Tissue-specific gene expression and ecdysone-regulated genomic networks in Drosophila. Dev Cell 5(1):59–72

    CAS  PubMed  Google Scholar 

  • Locher KP (2009) Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond Ser B Biol Sci 2364(1514):239–245

    Google Scholar 

  • Long HK, Prescott SL, Wysocka J (2016) Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell. 167(5):1170–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacFarlane AJ, Perry CA, Girnary HH, Gao D, Allen RH, Stabler SP, Shane B, Stover PJ (2009) Mthfd1 is an essential gene in mice and alters biomarkers of impaired one-carbon metabolism. J Biol Chem 284(3):1533–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCullough T (1966) Compounds found in the defensive scent glands of Harpalus caliginosus (Coleoptera: Carabidae). Ann Entomol Soc Am 59(5):1020–1021

    CAS  Google Scholar 

  • Mehler AH, Knox WE (1950) The conversion of tryptophan to kynurenine in liver. II The enzymatic hydrolysis of formylkynurenine. J Biol Chem 187(1):431–438

    CAS  PubMed  Google Scholar 

  • Meiser J, Tumanov S, Maddocks O, Labuschagne CF, Athineos D, Van Den Broek N, Mackay GM, Gottlieb E, Blyth K, Vousden K, Kamphorst JJ, Vazquez A (2016) Serine one-carbon catabolism with formate overflow. Sci Adv 2(10):e1601273

    PubMed  PubMed Central  Google Scholar 

  • Moore BP, Wallbank BE (1968) Chemical composition of the defensive secretion in carabid beetles and its importance as a taxonomic character. Proc R Ent Soc Lond 37(5–6):62–72

    Google Scholar 

  • Moore BP (1979) Chemical defense in Carabids and its bearing on phylogeny. Carabid Beetles:193–203

  • Mulder GJ (1992) Glucuronidation and its role in regulation of biological activity of drugs. Annu Rev Pharmacol Toxicol 32:25–49

    CAS  PubMed  Google Scholar 

  • Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274

    CAS  PubMed  Google Scholar 

  • Parkhitko AA, Jouandin P, Mohr SE, Perrimon N (2019) Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell 18(6):e13034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peschke K, Eisner T (1987) Defensive secretion of the tenebrionid beetle Blaps mucronata physical and chemical determinants of effectiveness. J Comp Physiol A 161(3):377–388

    CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    CAS  PubMed  Google Scholar 

  • Philippe H, Zhou Y, Brinkmann H, Rodrigue N, Delsuc F (2005) Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol 5:50

    PubMed  PubMed Central  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    CAS  PubMed  Google Scholar 

  • Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Taquet N, Blomquist GJ, Feyereisen R (2012) An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 109(37):14858–11463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quistgaard EM, Löw C, Guettou F, Nordlund P (2016) Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat Rev Mol Cell Biol 17:123–132

    CAS  PubMed  Google Scholar 

  • Ranwez V, Harispe S, Delsuc F, Douzery EJP (2011) MACSE: multiple alignment of coding SEquences accounting for Frameshifts and stop codons. PLoS One 6(9):e22594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    PubMed  PubMed Central  Google Scholar 

  • Rork AM, Mikó I, Renner T (2019) Pygidial glands of Harpalus pensylvanicus (Coleoptera: Carabidae) contain resilin-rich structures. Arthropod Struct Dev 44(12):1069–1083

    Google Scholar 

  • Rork AM, Renner T (2018) Carabidae Semiochemistry: current and future directions. J Chem Ecol 49:19–25

    Google Scholar 

  • Rossini C, Attygalle AB, González A, Smedley SR, Eisner M, Meinwald J, Eisner T (1977) Defensive production of formic acid (80%) by a carabid beetle (Galerita lecontei). Proc Natl Acad Sci U S A 94:6792–6797

    Google Scholar 

  • Roth LM, Eisner T (1962) Chemical defenses of arthropods. Annu Rev Entomol 7:107–136

    CAS  Google Scholar 

  • Savarse TM, Shih-Hsi C, Ming-Yu C, Parks RE (1985) 5′-Deoxy-5′-methylthioadenosine phosphorylase—III: role of the enzyme in the metabolism and action of 5′-halogenated adenosine analogs. Biochem Pharmacol 34(3):361–367

    Google Scholar 

  • Schildknecht H, Holoubek K (1961) Die Bombardierkäfer und ihre Explosionschemie V. Mitteilung über Insekten-Abwehrstoffe. Angew Chem 73(1):1–7

    Google Scholar 

  • Schildknecht H, Maschwitz U, Winkler H (1968a) Zur Evolution der Carabiden-Wehrdrüsensekrete. Über Arthropoden-Abwehrstoffe XXXII Naturwissenschaften 55:112–117

  • Schildknecht H, Weis KH (1961) Die chemische natur des wehrsekretes von Pseudophonus pubescens und Ps. griseus. VIII. Mitteilung über insektenabwehrstoffe. Z Naturforsch B 16:361–363

    Google Scholar 

  • Schildknecht H, Winkler H, Maschwitz U (1968b) Vergleichend chemische Untersuchungen der Inhaltsstoffe der Pygidialwehrblasen von Carabiden. Über Arthropoden-Abwehrstoffe XXXI Z Naturforsch B 23:637–644

  • Schildknecht H (1961) Über Insekten-und Pflanzenabwehrstoffe, ihre Isolierung und Aufklärung. Angew Chem 73(17-18):629

  • Schildknecht H (1964) Defensive substances of the arthropods, their isolation and identification. Angew Chem Int Ed 3(2):73–82

    Google Scholar 

  • Schildknecht H (1970) The defensive chemistry of land and water beetles. Angew Chem Int Ed 9(1):1–9

    CAS  Google Scholar 

  • Schuler MA, Berenbaum MR (2013) Structure and function of cytochrome P450s in insect adaptation to natural and synthetic toxins: insights gained from molecular modeling. J Chem Ecol 39(9):1232–1245

    CAS  PubMed  Google Scholar 

  • Schurch NJ, Schofield P, Gierliński M, Cole C, Sherstnev A, Singh V, Wrobel N, Gharbi K, Simpson GG, Owen-Hughes T, Blaxter M, Barton GJ (2016) How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA. 22(6):839–851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott JG, Wen Z (2001) Cytochromes P450 of insects: the tip of the iceberg. Pest Manag Sci 57(10):958–967

    CAS  PubMed  Google Scholar 

  • Sekowska A, Ashida H, Danchin A (2019) Revisiting the methionine salvage pathway and its paralogues. Microb Biotechnol 12(1):77–97

    CAS  PubMed  Google Scholar 

  • Simāo FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 31(19):3210–3212

    PubMed  Google Scholar 

  • Smith JD, McManus KF, Fraser HB (2013) A novel test for selection on cis-regulatory elements reveals positive and negative selection acting on mammalian transcriptional enhancers. Mol Biol Evol 30(11):2509–2518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL (2015) Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol 32(5):1342–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonawane AR, Platig J, Fagny M, Chen CY, Paulson JN, Lopes-Ramos CM, DeMeo DL, Quackenbush J, Glass K, Kuijjer ML (2017) Understanding tissue-specific gene regulation. Cell Rep 21(4):1077–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steuernagel L, Meckbach C, Heinrich F, Zeidler S, Schmitt AO, Gültas M (2019) Computational identification of tissue-specific transcription factor cooperation in ten cattle tissues. PLoS One 14(5):e021647

    Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc Series B 64:479–498

    Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    CAS  PubMed  Google Scholar 

  • Tautz D, Domazet-Lošo T (2011) The evolutionary origin of orphan genes. Nat. Rev. Genet. 12(10):692–702

    CAS  PubMed  Google Scholar 

  • The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    PubMed Central  Google Scholar 

  • Wagner W, Breksa AP 3rd, Monzingo AF, Appling DR, Robertus JD (2005) Kinetic and structural analysis of active site mutants of monofunctional NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase from Saccharomyces cerevisiae. Biochemistry 44(39):13163–13171

    CAS  PubMed  Google Scholar 

  • West MG, Barlowe CK, Appling DR (1993) Cloning and characterization of the Saccharomyces cerevisiae gene encoding NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase. J Biol Chem 268(1):153–160

    CAS  PubMed  Google Scholar 

  • Wheeler TJ, Eddy SR (2013) Nhmmer: DNA homology search with profile HMMs. Bioinformatics 29(19):2487–2489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Will KW, Attygalle AB, Herath K (2000) New defensive chemical data for ground beetles (Coleoptera: Carabidae): interpretations in a phylogenetic framework. Biol J Linn Soc 71:459–481

    Google Scholar 

  • Will KW, Gill AS, Lee H, Attygalle AB (2010) Quantification and evidence for mechanically metered release of pygidial secretions in formic acid-producing carabid beetles. J Insect Sci 10:1–17

    Google Scholar 

  • Wilson EO, Regnier FE (1971) The evolution of the alarm-defense system in the formicine ants. Am Nat 105(943):279–289

    Google Scholar 

  • Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:206–216

    CAS  PubMed  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Yuka Imamura and Kimberly Moran for their assistance with RNA extraction, library preparation, and RNA-Seq. We would also like to thank Wendy Moore, Reilly McManus, Kipling Will, Sean Perez, and Aman Gill for thoughtful discussion on Carabidae biology and chemical defense mechanisms. Additionally, we thank Wendy Moore, Kipling Will, Kylie Bocklund, Chloe P. Drummond, Katie Nolan, Kadeem Gilbert, Arthi Bala, Dana Roberts, Jonah Ulmer, and István Mikó for discussion and critique of this project, its results, and interpretation. This work was supported by the National Science Foundation [DEB 1762760, 1556898].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam M. Rork.

Additional information

The original online version of this article was revised: Modifications have been made to the sentences under Methods and figures 1-5 captions.

Supplementary Information

ESM 1

(PNG 66 kb)

ESM 2

(PNG 60 kb)

ESM 3

(PNG 68 kb)

ESM 4

(PDF 114 kb)

ESM 5

(PDF 135 kb)

ESM 6

(PDF 517 kb)

ESM 7

(DOCX 22.6 kb)

ESM 8

(XLSX 80233 kb)

ESM 9

(XLSX 29 kb)

ESM 10

(TXT 3 kb)

ESM 11

(TXT 177 bytes)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rork, A.M., Xu, S., Attygalle, A. et al. Primary Metabolism co-Opted for Defensive Chemical Production in the Carabid Beetle, Harpalus pensylvanicus. J Chem Ecol 47, 334–349 (2021). https://doi.org/10.1007/s10886-021-01253-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-021-01253-2

Keywords

Navigation