Skip to main content
Log in

Suberoylanilide Hydroxamic Acid (SAHA) Reduces Fibrosis Markers and Deactivates Human Stellate Cells via the Epithelial–Mesenchymal Transition (EMT)

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Hepatic fibrosis is known as the accumulation of connective tissue secondary to chronic damage to the liver. Epithelial–mesenchymal transition (EMT) corresponding increase in liver fibrogenesis was shown with immunohistochemistry and PCR-based studies. Suberoylanilide hydroxamic acid (SAHA), a synthetic compound approved as a histone deacetylase inhibitor (HDAC) by the FDA to treat cutaneous T-cell lymphoma is under investigation for the treatment of lung and renal fibrosis. Experimental modeling for hepatic fibrosis can be constructed with an LX2 cell line isolated from human hepatic stellate cells (HSCs). In this study, we aimed to investigate the modulation of SAHA in the pathogenesis of liver fibrosis by detecting the levels of proteins; (E-cadherin (E-cad), N-cadherin (N-cad), Vimentin (Vim), and genes; E-cad, N-cad, Vim, transforming growth factor-beta (TGF-β), alpha-smooth muscle actin (α-SMA), type 1 collagen (COL1A1), type 3 collagen (COL3A1)) that play a significant role in EMT with the LX2 cell line. We also evaluated the action of SAHA with cell proliferation, clonogenic, and migration assay. Cell proliferation was performed by flow cytometry. All the protein levels were determined by Western blot analysis, and gene expression levels were measured by Real-Time PCR. Our study observed that SAHA treatment decreased cell viability, colony formation and migration in LX2 cells. We found that SAHA increased E-cad expression level, while it decreased N-cad, Vim, COL1A1, COL3A1, α-SMA TGF-β genes expression levels. SAHA decreased the level of E-cad, N-cad, and Vim protein levels. We thought that SAHA possesses potent antifibrotic and anti-EMT properties in LX2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Elpek, G. Ö. (2014). Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: an update. World Journal of Gastroenterology, 20, 7260–7276.

    PubMed  PubMed Central  Google Scholar 

  2. Higashi, T., Friedman, S. L., & Hoshida, Y. (2017). Hepatic stellate cells as key target in liver fibrosis. Advanced Drug Delivery Reviews, 121, 27–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, C. Y., Yuan, W. G., He, P., Lei, J. H., & Wang, C. X. (2016). Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World Journal of Gastroenterology, 22, 10512–10522.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsuchida, T., & Friedman, S. L. (2017). Mechanisms of hepatic stellate cell activation. Nature Reviews Gastroenterology & Hepatology, 14, 397–411.

    CAS  Google Scholar 

  5. Ning, B., Li, W., Zhao, W., & Wang, R. (2016). Targeting epigenetic regulations in cancer. Acta Biochimica et Biophysica Sinica, 48, 97–109.

    CAS  PubMed  Google Scholar 

  6. Lakshmaiah, K. C., Jacob, L. A., Aparna, S., Lokanatha, D., & Saldanha, S. C. (2014). Epigenetic therapy of cancer with histone deacetylase inhibitors. Journal of Cancer Researche and Therapeutics, 10, 469–478.

    CAS  Google Scholar 

  7. Roche, J., & Bertrand, P. (2016). Inside HDACs with more selective HDAC inhibitors. European Journal of Medicinal Chemistry, 121, 451–483.

    CAS  PubMed  Google Scholar 

  8. Richters, A., & Koehler, A. N. (2017). Epigenetic modulation using small molecules—-targeting histone acetyltransferases in disease. Current Medicinal Chemistry, 24, 4121–4150.

    CAS  PubMed  Google Scholar 

  9. Massey, V., Cabezas, J., & Bataller, R. (2017). Epigenetics in liver fibrosis. Seminars in Liver Disease, 37, 219–230.

    CAS  PubMed  Google Scholar 

  10. Hadden, M. J., & Advani, A. (2018). Histone deacetylase inhibitors and diabetic kidney disease. International Journal of Molecular Science, 19, 2630.

    Google Scholar 

  11. Beneden, K. V., Mannaerts, I., Pauwels, M., Branden, C. V., & van Grunsven, L. A. (2013). HDAC inhibitors in experimental liver and kidney fibrosis. Fibrogenesis & Tissue Repair, 6, 1.

    Google Scholar 

  12. Marfurt, J., Chalfein, F., Prayoga, P., Wabiser, F., Kenangalem, E., & Piera, K. A., et al. (2011). Ex vivo activity of histone deacetylase inhibitors against multidrug-resistant clinical isolates of Plasmodium falciparum and P. vivax. Antimicrobial Agents and Chemotherapy, 55, 961–966.

    CAS  PubMed  Google Scholar 

  13. Claveria-Cabello, A., Colyn, L., Arechederra, M., Urman, J. M., Berasain, C., & Avila, M. A., et al. (2020). Epigenetics in liver fibrosis: could HDACs be a therapeutic target? Cells, 9, 2321.

    CAS  PubMed Central  Google Scholar 

  14. Lee, S. J., Kim, K. H., & Park, K. K. (2014). Mechanisms of fibrogenesis in liver cirrhosis: the molecular aspects of epithelial-mesenchymal transition. World Journal of Hepatology, 6, 207–216.

    PubMed  PubMed Central  Google Scholar 

  15. Derycke, L. D., & Bracke, M. E. (2004). N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. The International Journal of Developmental Biology, 48, 463–476.

    CAS  PubMed  Google Scholar 

  16. Eckes, B., Colucci-Guyon, E., Smola, H., Nodder, S., Babinet, C., & Krieg, T., et al. (2000). Impaired wound healing in embryonic and adult mice lacking vimentin. Journal of Cell Science, 113, 2455–2462.

    CAS  PubMed  Google Scholar 

  17. Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. Journal of Clinical Investigation, 119, 1420–1428.

    CAS  Google Scholar 

  18. Lee, J. M., Dedharü, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. Journal of Cell Biology, 172, 973–981.

    CAS  Google Scholar 

  19. Kalluri, R., & Neilson, E. G. (2003). Epithelial-mesenchymal transition and its implications for fibrosis. Journal of Clinical Investigation, 112, 1776–1784.

    CAS  PubMed Central  Google Scholar 

  20. Kocabayoglu, P., & Friedman, S. L. (2013). Cellular basis of hepatic fibrosis and its role in inflammation and cancer. Frontier Bioscience, 5, 217–230.

    Google Scholar 

  21. Weiskirchen, R., Weimer, J., Meurer, S. K., Kron, A., Seipel, B., & Vater, I., et al. (2013). Genetic characteristics of the human hepatic stellate cell line LX-2. PLoS ONE, 8, 75692.

    Google Scholar 

  22. Díaz, R., Kim, J. W., Hui, J. J., Li, Z., Swain, G. P., & Fong, K. S., et al. (2008). Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis. Human Pathology, 39, 102–115.

    PubMed  Google Scholar 

  23. Syn, W. K., Jung, Y., Omenetti, A., Abdelmalek, M., Guy, C. D., & Yang, L., et al. (2009). Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology, 137, 1478–1488.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilson, C. L., Mann, D. A., & Borthwick, L. A. (2017). Epigenetic reprogramming in liver fibrosis and cancer. Advanced Drug Delivery Reviews, 121, 124–132.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. De Souza, C., & Chatterji, B. P. (2015). HDAC inhibitors as novel anti-cancer therapeutics. Recent Patients on Anticancer Drug Discovery, 10, 145–162.

    Google Scholar 

  26. Wang, Y. C., Yang, X., Xing, L. H., & Kong, W. Z. (2013). Effects of SAHA on proliferation and apoptosis of hepatocellular carcinoma cells and hepatitis B virus replication. World Jounal of Gastroenterology, 19, 5159–5164.

    Google Scholar 

  27. Hibino, S., Saito, Y., Muramatsu, T., Otani, A., Kasai, Y., & Kimura, M., et al. (2014). Inhibitors of enhancer of zeste homolog 2 (EZH2) activate tumor-suppressor microRNAs in human cancer cells. Oncogenesis, 3, e104 doi: 10.1038/oncsis.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu, H., Yang, X. F., Tian, X. Q., Tang, S. L., Li, L. Q., & Zhao, S., et al. (2016). The in vitro and vivo anti-tumor effects and molecular mechanisms of suberoylanilide hydroxamic acid (SAHA) and MG132 on the aggressive phenotypes of gastric cancer cells. Oncotarget, 7, 56508–56525.

    PubMed  PubMed Central  Google Scholar 

  29. Srinivas, C., Swathi, V., Priyanka, C., Anjana, D. T., Subba, R. B. V., & Janaki, R. M., et al. (2016). Novel SAHA analogues inhibit HDACs, induce apoptosis and modulate the expression of microRNAs in hepatocellular carcinoma. Apoptosis, 21, 1249–1264.

    CAS  PubMed  Google Scholar 

  30. Bernhart, E., Stuendl, N., Kaltenegger, H., Windpassinger, C., Donohue, N., & Leithner, A., et al. (2017). Histone deacetylase inhibitors vorinostat and panobinostat induce G1 cell cycle arrest and apoptosis in multidrug resistant sarcoma cell lines. Oncotarget, 8, 77254–77267.

    PubMed  PubMed Central  Google Scholar 

  31. Lee, Y. A., Wallace, M. C., & Friedman, S. L. (2015). Pathobiology of liver fibrosis: a translational success story. Gut, 64, 830–841.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, U. E., & Friedman, S. L. (2011). Mechanisms of hepatic fibrogenesis. Best Practice & Research Clinical Gastroenterology, 25, 195–206.

    CAS  Google Scholar 

  33. Friedman, S. L., Sheppard, D., Duffield, J. S., & Violette, S. (2013). Therapy for fibrotic diseases: nearing the starting line. Science Translational Medicine, 5, 167.

    Google Scholar 

  34. Wang, W., Yan, M., Ji, Q., Lu, J., Ji, Y., & Ji, J. (2015). Suberoylanilide hydroxamic acid suppresses hepatic stellate cells activation by HMGB1 dependent reduction of NF-κB1. Peer Journal, 3, e1362 https://doi.org/10.7717/peerj.1362.

    Article  CAS  Google Scholar 

  35. Rao, S. S., Zhang, X. Y., Shi, M. J., Xiao, Y., Zhang, Y. Y., & Wang, Y. Y., et al. (2016). Suberoylanilide hydroxamic acid attenuates paraquat-induced pulmonary fibrosis by preventing Smad7 from deacetylation in rats. Journal of Thoracic Disease, 8, 2485–2494.

    PubMed  PubMed Central  Google Scholar 

  36. Zhang, X., Liu, H., Hock, T., Thannickal, V. J., & Sanders, Y. Y. (2013). Histone deacetylase inhibition downregulates collagen 3A1 in fibrotic lung fibroblasts. International Journal of Molecular Science, 14, 19605–19617.

    Google Scholar 

  37. Wang, Y., Zhao, L., Jiao, F. Z., Zhang, W. B., Chen, Q., & Gong, Z. J. (2018). Histone deacetylase inhibitor suberoylanilide hydroxamic acid alleviates liver fibrosis by suppressing the transforming growth factor-β1 signal pathway. Hepatobiliary & Pancreatic Disease International, 17, 423–429.

    Google Scholar 

  38. Munker, S., Wu, Y. L., Ding, H. G., Liebe, R., & Weng, H. L. (2017). Can a fibrotic liver afford epithelial-mesenchymal transition? World Journal of Gastroenterology, 23, 4661–4668.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Choi, S. S., & Diehl, A. M. (2009). Epithelial-to-mesenchymal transitions in the liver. Hepatology, 50, 2007–2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Larue, L., & Bellacosa, A. (2005). Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3’ kinase/AKT pathways. Oncogene, 24, 7443–7454.

    CAS  PubMed  Google Scholar 

  41. Wells, R. G. (2010). The epithelial-to-mesenchymal transition in liver fibrosis: here today, gone tomorrow? Hepatology, 51, 737–740.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pinzani, M. (2011). Epithelial-mesenchymal transition in chronic liver disease: fibrogenesis or escape from death? Journal of Hepatology, 55, 459–465.

    CAS  PubMed  Google Scholar 

  43. Park, J. H., Park, B. & Park, K. K. (2017). Suppression of hepatic epithelial-to-mesenchymal transition by melittin via blocking of TGFβ/Smad and MAPK-JNK signaling pathways. Toxins (Basel), https://doi.org/10.3390/toxins9040138.

  44. Yoshikawa, M., Hishikawa, K., Marumo, T., & Fujita, T. (2007). Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-beta1 in human renal epithelial cells. Journal of The American Society of Nephrology, 18, 58–65.

    CAS  PubMed  Google Scholar 

  45. Choi, S. Y., Kee, H. J., Kurz, T., Hansen, F. K., Ryu, Y., & Kim, G. R., et al. (2016). Class I HDACs specifically regulate E-cadherin expression in human renal epithelial cells. Journal of Cellular and Molecular Medicine, 20, 2289–2298.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author contributions

Concept—G.B.; Design—G.B., M.Ö.; Supervision—G.B.; Resource—G.B.; Materials—G.B., M.Ö., H.A.; Data Collection and/or Processing—G.B., M.Ö., H.A.; Analysis and/or Interpretation—G.B., M.B.; Literature Search—G.B., M.Ö.; Writing—G.B., M.Ö.; Critical Reviews—G.B., M.B.

Funding

The authors declared that this study had received no financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merve Özel.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics committee approval

Ethics committee approval is not needed since it is a cell culture study.

Informed consent

No informed consent is needed since it is a cell culture study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özel, M., Baskol, M., Akalın, H. et al. Suberoylanilide Hydroxamic Acid (SAHA) Reduces Fibrosis Markers and Deactivates Human Stellate Cells via the Epithelial–Mesenchymal Transition (EMT). Cell Biochem Biophys 79, 349–357 (2021). https://doi.org/10.1007/s12013-021-00974-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-00974-1

Keywords

Navigation