Skip to main content
Log in

Width Estimation of Non-Gaussian Doppler Velocity Spectra of Meteorological Formations

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The paper considers features of the Doppler velocity spectrum width of meteorological formations obtained on the basis of the pulse-pair method when a velocity Doppler spectrum differs from the Gaussian shape. Since the autoregressive models of various orders are widely used in practice for approximating the echo signals from meteorological formations and taking into account their spectrum shape, we have analyzed the measurement errors while using the pulse-pair method. It is shown that neglecting the information on the shape of Doppler velocity spectrum may lead to unacceptable large measurement errors and distort the true level of danger of meteorological formations. The possible methods of determining the autoregressive model orders are discussed, and the benefits of the method based on threshold processing of α-parameters of adaptive lattice filters are shown. The distribution densities of these parameters are determined for the calculation of recognition threshold of autoregressive model order. The statistical characteristics of recognition obtained by the known and proposed methods are compared. The proposed method in terms of the accuracy of order recognition actually is not inferior to the known methods, but can be implemented directly in the process of measuring the width of Doppler velocity spectrum that sets it apart from the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. V. V. Naumenko, G. I. Totskii, G. I. Khlopov, O. A. Voitovich, "Classification of atmospheric formations using estimation of bicoherence of radar backscatter signals," Radiotekhnika, n.184, p.72 (2016). URI: https://nure.ua/wp-content/uploads/2016/Scientific_editions/184/16.pdf.

    Google Scholar 

  2. E. A. Bolelov, "Meteorological service for civil aviation: problems and ways of their solution," Civ. Aviat. High Technol., v.21, n.5, p.117 (2018). DOI: https://doi.org/10.26467/2079-0619-2018-21-5-117-129.

    Article  Google Scholar 

  3. N. V. Bocharnikov, G. B. Brylev, L. I. Kuznetsova, A. G. Linev, A. S. Lyalyushin, V. A. Olenev, T. V. Parkinen, A. S. Solonin, V. K. Ustinov, V. I. Frolov, Y. S. Chetverikova, N. A. Yakimainen, Automated Meteorological Radar Complexes - Meteocell (Gidrometeoizdat, St. Petersburg, 2007). URI: http://elib.rshu.ru/files_books/pdf/img-515154150.pdf.

    Google Scholar 

  4. B. M. Vovshin, I. S. Vylegzhanin, A. N. Korneev, V. V. Lavrukevich, A. A. Pushkov, "Experimental researches results of clutter properties and characteristics in impulse radars," Uspekhi Sovrem. Radioelektroniki. Zarubezhnaya Radioelektronika, n.2, p.51 (2018). URI: https://www.elibrary.ru/item.asp?id=32560321.

    Google Scholar 

  5. D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, D. V. Atamanskiy, A. A. Pushkov, "Estimation of Doppler velocities spectrum width of meteorological formations in coherent pulsed weather radars with arbitrary intervals of sounding," Uspekhi Sovrem. Radioelektroniki. Zarubezhnaya Radioelektronika, n.8, p.47 (2012). URI: https://www.elibrary.ru/item.asp?id=17997877.

    Google Scholar 

  6. D. I. Popov, "Clutter parameter estimation based on indirect algorithms," Radioelectron. Commun. Syst., v.62, n.1, p.42 (2019). DOI: https://doi.org/10.3103/S0735272719010060.

    Article  Google Scholar 

  7. V. M. Bezruk, Y. N. Belov, O. A. Voitovich, K. A. Netrebenko, V. A. Tikhonov, G. A. Rudnev, G. I. Khlopov, S. I. Khomenko, "Radar recognition of meteorological objects," in 22nd International Crimean Conference “Microwave & Telecommunication Technology” (IEEE, Washington, 2012). URI: https://ieeexplore.ieee.org/document/6335877.

    Google Scholar 

  8. V. Efremov, U. Laurukevich, D. Lekhovytskiy, I. Vylegzhanin, B. Vovshin, "Results of theoretical and experimental investigations of meteorological formations power spectrum using “superresolution” methods," in Proceedings IRS 2009 (Hamburg, 2009).

    Google Scholar 

  9. Y. I. Abramovich, N. K. Spencer, M. D. E. Turley, "Order estimation and discrimination between stationary and time-varying (TVAR) autoregressive models," IEEE Trans. Signal Process., v.55, n.6, p.2861 (2007). DOI: https://doi.org/10.1109/TSP.2007.893966.

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. I. Abramovich, N. K. Spencer, B. A. Johnson, "Band-inverse TVAR covariance matrix estimation for adaptive detection," IEEE Trans. Aerosp. Electron. Syst., v.46, n.1, p.375 (2010). DOI: https://doi.org/10.1109/TAES.2010.5417169.

    Article  Google Scholar 

  11. E. Malikov, Y. Sun, "Semiparametric estimation and testing of smooth coefficient spatial autoregressive models," J. Econom., v.199, n.1, p.12 (2017). DOI: https://doi.org/10.1016/j.jeconom.2017.02.005.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, "K-rank modification of adaptive lattice filter parameters," in 2015 IEEE Radar Conference (RadarCon) (IEEE, 2015). DOI: https://doi.org/10.1109/RADAR.2015.7130983.

    Chapter  Google Scholar 

  13. J. P. Burg, D. G. Luenberger, D. L. Wenger, "Estimation of structured covariance matrices," Proc. IEEE, v.70, n.9, p.963 (1982). DOI: https://doi.org/10.1109/PROC.1982.12427.

    Article  Google Scholar 

  14. D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, V. P. Ryabukha, D. V. Atamanskiy, "Adaptive lattice filters. Part I. Theory of lattice structures," Appl. Radio Electron., v.10, n.4, p.380 (2011). URI: https://openarchive.nure.ua/bitstream/document/4699/1/380-404.pdf.

    Google Scholar 

  15. D. I. Lekhovytskiy, "Adaptive lattice filters for systems of space-time processing of non-stationary Gaussian processes," Radioelectron. Commun. Syst., v.61, n.11, p.477 (2018). DOI: https://doi.org/10.3103/S0735272718110018.

    Article  Google Scholar 

  16. H.-G. Beyer, B. Sendhoff, "Simplify your covariance matrix adaptation evolution strategy," IEEE Trans. Evol. Comput., v.21, n.5, p.746 (2017). DOI: https://doi.org/10.1109/TEVC.2017.2680320.

    Article  Google Scholar 

  17. I. Stanimirović, Computation of Generalized Matrix Inverses and Applications (Apple Academic Press, 2018). URI: https://www.routledge.com/Computation-of-Generalized-Matrix-Inverses-and-Applications/Stanimirovic/p/book/9781771886222.

    MATH  Google Scholar 

  18. W.-H. Yang, S. H. Holan, C. K. Wikle, "Bayesian lattice filters for time-varying autoregression and time-frequency analysis," Bayesian Anal., v.11, n.4, p.977 (2016). DOI: https://doi.org/10.1214/15-BA978.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. A. Bakut, I. A. Bolshakov, B. M. Gerasimov, Issues of Statistical Radio Location Theory (Sov. Radio, Moscow, 1963).

    Google Scholar 

  20. I. K. Pikaev, "Estimate distribution density of complex correlation coefficient," Radiotekhnika i Elektron., v.35, n.5, p.1090 (1990).

    Google Scholar 

  21. B. Friedlander, "Lattice filters for adaptive processing," Proc. IEEE, v.70, n.8, p.829 (1982). DOI: https://doi.org/10.1109/PROC.1982.12407.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Atamanskiy.

Ethics declarations

ADDITIONAL INFORMATION

D. V. Atamanskiy, A. V. Semeniaka, and I. V. Krasnoshapka

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347021010015 with DOI: https://doi.org/10.20535/S0021347021010015

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atamanskiy, D.V., Semeniaka, A.V. & Krasnoshapka, I.V. Width Estimation of Non-Gaussian Doppler Velocity Spectra of Meteorological Formations. Radioelectron.Commun.Syst. 64, 1–13 (2021). https://doi.org/10.3103/S0735272721010015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272721010015

Navigation