Skip to main content
Log in

Magnetic field and pressure induced valence and metal-insulator transitions in the spin-one-half Falicov–Kimball model

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A combination of exact diagonalization calculations and a well-controlled approximate method is used to study valence and metal-insulator transitions in the spin-one-half Falicov–Kimball model (FKM) in the external magnetic field. It is shown that there exists a critical value of the magnetic field \(h_c\) that depends on the f-level position \(E_f\), above which the spin-one-half FKM maps onto the spinless FKM. In this limit the spin-one-half FKM recovers all physics of the spinless model, including the picture of valence and metal-insulator transitions induced by changes of \(E_f\) and opens the way to its experimental verification in real systems, like rare-earth compounds in the external magnetic field. In addition, we have found that the spin-one-half FKM in the external magnetic field exhibits a wide spectrum of continuous, as well as discontinuous valence, magnetic and metal-insulator transitions that can be induced by tuning directly the external magnetic field or indirectly the external pressure (via the f-level position). The experimental verification of these transitions represent also an interesting challenge, the solution of which can shed more light on the physics of valence and metal-insulator transitions in correlated d-f electron systems. Most of presented results are calculated for the one-dimensional spin-one-half FKM, but to establish connection with the behavior of real rare-earth materials we discuss also effects of the increasing system dimension and the anisotropic spin-dependent d-f interaction, which can play an important role in these materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data can be obtained through numerical simulations described in detail in the current manuscript.]

References

  1. D.L. Khomskii, Quantum Theory of Solids, edited by I.M. Lifshitz (Mir, Moscow 1982)

  2. A. Jayaraman, in Handbook on the Physics, Chemistry of Rare Earth, edited by K. A. Gschneider, L. R. Eyring (North-Holland, Amsterdam, 1979), Vol. 2

  3. P. Wachter, in Handbook on the Physics, Chemistry of Rare Earth, edited by K. A. Gschneider, L. R. Eyring (North-Holland, Amsterdam, 1994), Vol. 19

  4. L.M. Falicov, J.C. Kimball, Phys. Rev. Lett. 22, 997 (1969)

    Article  ADS  Google Scholar 

  5. P.W. Anderson, Phys. Rev. 124, 41 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  6. P.A. Lee, T.M. Rice, J.W. Serene, L.J. Sham, J.W. Wilkins, Comments Cond. Mat. Phys. 12, 99 (1986)

    Google Scholar 

  7. J. Hubbard, Proc. Roy. Soc. A 277, 237 (1964)

    ADS  Google Scholar 

  8. J. Hubbard, Proc. Roy. Soc. A281, 401 (1964)

    ADS  Google Scholar 

  9. C.E.T. Goncalves da Silva, L.M. Falicov, J. Phys. C9, 906 (1972)

    ADS  Google Scholar 

  10. J. Rossler, R.J. Ramirez, ibid. C9, 3747 (1976)

  11. J.W. Schweitzer, Phys. Rev. B 17, 758 (1977)

    Article  ADS  Google Scholar 

  12. M. Plischke, Phys. Rev. Lett. 28, 361 (1972)

    Article  ADS  Google Scholar 

  13. D.K. Ghosh, Solid State Commun. 18, 1377 (1976)

    Article  ADS  Google Scholar 

  14. A.C. Hewson, P.S. Reiseborough, ibid. 22, 379 (1977)

  15. T. Kennedy, E.H. Lieb, Physica A 138, 320 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  16. U. Brandt, R. Schmidt, Z. Phys. B 63, 45 (1986)

  17. J.K. Freericks, V. Zlatić, Rev. Mod. Phys. 75, 1333 (2003)

    Article  ADS  Google Scholar 

  18. P. Farkašovský, Eur. Phys. J. B 20, 208 (2001)

    Article  ADS  Google Scholar 

  19. R. Lemanski, J.K. Freericks, G. Banach, Phys. Rev. Lett. 89, 196403 (2002)

    Article  ADS  Google Scholar 

  20. J.K. Freericks, C. Gruber, N. Macris, Phys. Rev. B 53, 16189 (1996)

    Article  ADS  Google Scholar 

  21. P. Farkašovský, Phys. Rev. B 51, 1507 (1995)

    Article  ADS  Google Scholar 

  22. P. Farkašovský, Phys. Rev. B 52, R5463 (1995)

    Article  ADS  Google Scholar 

  23. C.H. Chen, S.-W. Cheong, A.S. Cooper, Phys. Rev. Lett. 71, 2461 (1993)

    Article  ADS  Google Scholar 

  24. J.M. Tranquada, D.J. Buttrey, V. Sachan, J.E. Lorenzo, Phys. Rev. Lett. 73, 1003 (1994)

    Article  ADS  Google Scholar 

  25. J.M. Tranquada, D.J. Buttrey, V. Sachan, J.E. Lorenzo, Phys. Rev. B 52, 3581 (1995)

    Article  ADS  Google Scholar 

  26. J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Nature (London) 375, 561 (1995)

    Article  ADS  Google Scholar 

  27. J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Phys. Rev. B 54, 7489 (1996)

    Article  ADS  Google Scholar 

  28. J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Phys. Rev. Lett. 78, 338 (1997)

    Article  ADS  Google Scholar 

  29. H.A. Mook, P. Dai, F. Dogan, Phys. Rev. Lett. 88, 097004 (2002)

    Article  ADS  Google Scholar 

  30. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. Dilanian, T. Sasaki, Nature (London) 422, 53 (2003)

    Article  ADS  Google Scholar 

  31. M. Batkova, I. Batko, K. Flachbart, Z. Janu, K. Jurek, E.S. Konovalova, J. Kovac, M. Reiffers, V. Sechovsky, N. Shitsevalova, Phys. Rev. B 78, 224414 (2008)

    Article  ADS  Google Scholar 

  32. R. Lemanski, Phys. Rev. B 71, 035107 (2005)

    Article  ADS  Google Scholar 

  33. P. Farkašovský, H. Čenčariková, Eur. Phys. J. B 47, 517 (2005)

    Article  ADS  Google Scholar 

  34. R. Lemanski, Physica Status Solidi B 242, 409 (2005)

    Article  ADS  Google Scholar 

  35. R. Lemanski, J. Wrzodak, Phys. Rev. B 78, 085118 (2008)

    Article  ADS  Google Scholar 

  36. H. Čenčariková, P. Farkašovský, Condensed Matter Phys. 14, 42701 (2011)

    Article  Google Scholar 

  37. H. Čenčariková, P. Farkašovský N. Tomasovicova, M. Zonda, Physica Status Solidi B 245, 2593 (2008)

  38. H. Čenčariková, P. Farkašovský, Int. J. Mod. Phys. B 18, 357 (2004)

    Article  ADS  Google Scholar 

  39. P. Farkašovský, Acta Physica Slovaca 60, 497 (2010)

    ADS  Google Scholar 

  40. P. Farkašovský, Phys. Rev. B 60, 10776 (1999)

    Article  ADS  Google Scholar 

  41. G. Czycholl, Phys. Rep. B 143, 277 (1986)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by projects VEGA 2-0112-18, APVV-17-0020, ITMS 2220120047, ITMS 26230120002 and IMTS 26210120002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavol Farkašovský.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkašovský, P. Magnetic field and pressure induced valence and metal-insulator transitions in the spin-one-half Falicov–Kimball model. Eur. Phys. J. B 94, 61 (2021). https://doi.org/10.1140/epjb/s10051-021-00069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00069-z

Navigation