Skip to main content
Log in

Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) black arsenic phosphorus (b-AsP), as an alloy of black phosphorus (b-P) with arsenic, has attracted great attention because of its outstanding electronic and optical properties, including high carrier mobility, tunable bandgap and in-plane anisotropy. B-AsP has a smaller bandgap (0.15–0.3 eV) than the b-P bandgap (0.3–2.0 eV), and thus can be used for mid-infrared photodetectors. In addition, both of them can form various van der Waals (vdW) heterojunctions with other 2D materials to realize novel functional optoelectronic devices. Here, we compare the basic characteristics of b-AsP and b-P, including crystal structure, optical properties, band structure, electrical properties and stability, and we summarize the update progress of b-AsP in photo detection, including representatives of phototransistor and photodiode devices. In the last part, the future research directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bridgman P W. Two new modifications of phosphorus. J Am Chem Soc, 1914, 36: 1344–1363

    Article  Google Scholar 

  2. Morita A. Semiconducting black phosphorus. Appl Phys A, 1986, 39: 227–242

    Article  Google Scholar 

  3. Wang X R, Zhou P. Special focus on two-dimensional materials and device applications. Sci China Inf Sci, 2019, 62: 220400

    Article  Google Scholar 

  4. Yang H, Xiao M Q, Cui Y, et al. Nonvolatile memristor based on heterostructure of 2D room-temperature ferroelectric α-In2Se3 and WSe2. Sci China Inf Sci, 2019, 62: 220404

    Article  Google Scholar 

  5. Jia R D, Chen L, Huang Q Q, et al. Complementary tunneling transistors based on WSe2/SnS2 van der Waals heterostructure. Sci China Inf Sci, 2020, 63: 149401

    Article  Google Scholar 

  6. Liu L T, Liu Y, Duan X F. Graphene-based vertical thin film transistors. Sci China Inf Sci, 2020, 63: 201401

    Article  Google Scholar 

  7. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  Google Scholar 

  8. Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B, 2014, 89: 235319

    Article  Google Scholar 

  9. Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8: 4033–4041

    Article  Google Scholar 

  10. Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotech, 2014, 9: 372–377

    Article  Google Scholar 

  11. Shirotani I, Mikami J, Adachi T, et al. Phase transitions and superconductivity of black phosphorus and phosphorus-arsenic alloys at low temperatures and high pressures. Phys Rev B, 1994, 50: 16274–16278

    Article  Google Scholar 

  12. Liu B, Köpf M, Abbas A N, et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv Mater, 2015, 27: 4423–4429

    Article  Google Scholar 

  13. Long M, Gao A, Wang P, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci Adv, 2017, 3: e1700589

    Article  Google Scholar 

  14. Wu F, Xia H, Sun H, et al. AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Adv Funct Mater, 2019, 29: 1900314

    Article  Google Scholar 

  15. Ryzhii V, Ryzhii M, Mitin V, et al. Far-infrared photodetectors based on graphene/black-AsP heterostructures. Opt Express, 2020, 28: 2480–2498

    Article  Google Scholar 

  16. Wu F, Li Q, Wang P, et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat Commun, 2019, 10: 4663

    Article  Google Scholar 

  17. Takao Y, Asahina H, Morita A. Electronic structure of black phosphorus in tight binding approach. J Phys Soc Jpn, 1981, 50: 3362–3369

    Article  Google Scholar 

  18. Asahina H, Shindo K, Morita A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J Phys Soc Jpn, 1982, 51: 1193–1199

    Article  Google Scholar 

  19. Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun, 2014, 5: 4458

    Article  Google Scholar 

  20. Xia F, Wang H, Hwang J C M, et al. Black phosphorus and its isoelectronic materials. Nat Rev Phys, 2019, 1: 306–317

    Article  Google Scholar 

  21. Zhou W, Zhang S, Wang Y, et al. Anisotropic in-plane ballistic transport in monolayer black arsenic-phosphorus FETs. Adv Electron Mater, 2020, 6: 1901281

    Article  Google Scholar 

  22. Shi X, Wang T, Wang J, et al. Synthesis of black arsenic-phosphorus and its application for Er-doped fiber ultrashort laser generation. Opt Mater Express, 2019, 9: 2348–2357

    Article  Google Scholar 

  23. Sun J, Lin N, Ren H, et al. The electronic structure, mechanical flexibility and carrier mobility of black arsenic-phosphorus monolayers: a first principles study. Phys Chem Chem Phys, 2016, 18: 9779–9787

    Article  Google Scholar 

  24. Sun Y, Shuai Z, Wang D. Lattice thermal conductivity of monolayer AsP from first-principles molecular dynamics. Phys Chem Chem Phys, 2018, 20: 14024–14030

    Article  Google Scholar 

  25. Karki B, Rajapakse M, Sumanasekera G U, et al. Structural and thermoelectric properties of black arsenic-phosphorus. ACS Appl Energy Mater, 2020, 3: 8543–8551

    Article  Google Scholar 

  26. Li L L, Bacaksiz C, Nakhaee M, et al. Single-layer Janus black arsenic-phosphorus (b-AsP): optical dichroism, anisotropic vibrational, thermal, and elastic properties. Phys Rev B, 2020, 101: 134102

    Article  Google Scholar 

  27. Amani M, Regan E, Bullock J, et al. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano, 2017, 11: 11724–11731

    Article  Google Scholar 

  28. Yu L, Zhu Z, Gao A, et al. Electrically tunable optical properties of few-layer black arsenic phosphorus. Nanotechnology, 2018, 29: 484001

    Article  Google Scholar 

  29. Yuan S, Shen C, Deng B, et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett, 2018, 18: 3172–3179

    Article  Google Scholar 

  30. Low T, Rodin A S, Carvalho A, et al. Tunable optical properties of multilayer black phosphorus thin films. Phys Rev B, 2014, 90: 075434

    Article  Google Scholar 

  31. Young E P, Park J, Bai T, et al. Wafer-scale black arsenic-phosphorus thin-film synthesis validated with density functional perturbation theory predictions. ACS Appl Nano Mater, 2018, 1: 4737–4745

    Article  Google Scholar 

  32. Li L, Kim J, Jin C, et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat Nanotech, 2017, 12: 21–25

    Article  Google Scholar 

  33. Fei R, Yang L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett, 2014, 14: 2884–2889

    Article  Google Scholar 

  34. Benam Z H, Arkin H, Aktürk E. Point defects in buckled and asymmetric washboard phases of arsenic phosphorus: a first principles study. Comput Mater Sci, 2017, 140: 290–298

    Article  Google Scholar 

  35. Li Y, Hu Z, Lin S, et al. Giant anisotropic raman response of encapsulated ultrathin black phosphorus by uniaxial strain. Adv Funct Mater, 2017, 27: 1600986

    Article  Google Scholar 

  36. Wang X, Jones A M, Seyler K L, et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat Nanotech, 2015, 10: 517–521

    Article  Google Scholar 

  37. Kim J, Lee J U, Lee J, et al. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale, 2015, 7: 18708–18715

    Article  Google Scholar 

  38. Wu J, Mao N, Xie L, et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized raman spectroscopy. Angew Chem Int Ed, 2015, 54: 2366–2369

    Article  Google Scholar 

  39. Phaneuf-L’Heureux A L, Favron A, Germain J F, et al. Polarization-resolved raman study of bulk-like and davydov-induced vibrational modes of exfoliated black phosphorus. Nano Lett, 2016, 16: 7761–7767

    Article  Google Scholar 

  40. Viti L, Hu J, Coquillat D, et al. Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response. Sci Rep, 2016, 6: 20474

    Article  Google Scholar 

  41. Liu Y, Qiu Z, Carvalho A, et al. Gate-tunable giant stark effect in few-layer black phosphorus. Nano Lett, 2017, 17: 1970–1977

    Article  Google Scholar 

  42. Das S, Demarteau M, Roelofs A. Ambipolar phosphorene field effect transistor. ACS Nano, 2014, 8: 11730–11738

    Article  Google Scholar 

  43. Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett, 2014, 14: 6414–6417

    Article  Google Scholar 

  44. Hong T, Chamlagain B, Lin W, et al. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale, 2014, 6: 8978–8983

    Article  Google Scholar 

  45. Avsar A, Vera-Marun I J, Tan J Y, et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano, 2015, 9: 4138–4145

    Article  Google Scholar 

  46. Li L, Ye G J, Tran V, et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat Nanotech, 2015, 10: 608–613

    Article  Google Scholar 

  47. Saito Y, Iwasa Y. Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating. ACS Nano, 2015, 9: 3192–3198

    Article  Google Scholar 

  48. Viti L, Hu J, Coquillat D, et al. Black phosphorus terahertz photodetectors. Adv Mater, 2015, 27: 5567–5572

    Article  Google Scholar 

  49. Yang J, Xu R, Pei J, et al. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci Appl, 2015, 4: e312

    Article  Google Scholar 

  50. Zhu W, Yogeesh M N, Yang S, et al. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett, 2015, 15: 1883–1890

    Article  Google Scholar 

  51. Li L, Yang F, Ye G J, et al. Quantum hall effect in black phosphorus two-dimensional electron system. Nat Nanotech, 2016, 11: 593–597

    Article  Google Scholar 

  52. Zhu W, Park S, Yogeesh M N, et al. Black phosphorus flexible thin film transistors at gighertz frequencies. Nano Lett, 2016, 16: 2301–2306

    Article  Google Scholar 

  53. Dhanabalan S C, Ponraj J S, Guo Z, et al. Emerging trends in phosphorene fabrication towards next generation devices. Adv Sci, 2017, 4: 1600305

    Article  Google Scholar 

  54. Miao J, Song B, Li Q, et al. Photothermal effect induced negative photoconductivity and high responsivity in flexible black phosphorus transistors. ACS Nano, 2017, 11: 6048–6056

    Article  Google Scholar 

  55. Miao J, Xu Z, Li Q, et al. Vertically stacked and self-encapsulated van der Waals heterojunction diodes using two-dimensional layered semiconductors. ACS Nano, 2017, 11: 10472–10479

    Article  Google Scholar 

  56. Miao J, Song B, Xu Z, et al. Single pixel black phosphorus photodetector for near-infrared imaging. Small, 2018, 14: 1702082

    Article  Google Scholar 

  57. Gao A, Lai J, Wang Y, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nanotechnol, 2019, 14: 217–222

    Article  Google Scholar 

  58. Qiao J, Kong X, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 2014, 5: 4475

    Article  Google Scholar 

  59. Xie M, Zhang S, Cai B, et al. A promising two-dimensional solar cell donor: black arsenic-phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14000 cm2V−1s−1. Nano Energy, 2016, 28: 433–439

    Article  Google Scholar 

  60. Kim J S, Liu Y, Zhu W, et al. Toward air-stable multilayer phosphorene thin-films and transistors. Sci Rep, 2015, 5: 8989

    Article  Google Scholar 

  61. Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett, 2014, 14: 3347–3352

    Article  Google Scholar 

  62. Wu J, Koon G K W, Xiang D, et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano, 2015, 9: 8070–8077

    Article  Google Scholar 

  63. Buscema M, Groenendijk D J, Steele G A, et al. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat Commun, 2014, 5: 4651

    Article  Google Scholar 

  64. Chen C, Youngblood N, Peng R, et al. Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics. Nano Lett, 2017, 17: 985–991

    Article  Google Scholar 

  65. Xiang D, Han C, Wu J, et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat Commun, 2015, 6: 6485

    Article  Google Scholar 

  66. Xu Y, Yuan J, Fei L, et al. Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small, 2016, 12: 5000–5007

    Article  Google Scholar 

  67. Na J, Park K, Kim J T, et al. Air-stable few-layer black phosphorus phototransistor for near-infrared detection. Nanotechnology, 2017, 28: 085201

    Article  Google Scholar 

  68. Chen X, Wu Y, Wu Z, et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat Commun, 2015, 6: 7315

    Article  Google Scholar 

  69. Tayari V, Hemsworth N, Fakih I, et al. Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat Commun, 2015, 6: 7702

    Article  Google Scholar 

  70. Long G, Maryenko D, Shen J, et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett, 2016, 16: 7768–7773

    Article  Google Scholar 

  71. Perello D J, Chae S H, Song S, et al. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat Commun, 2015, 6: 7809

    Article  Google Scholar 

  72. Prakash A, Cai Y, Zhang G, et al. Black phosphorus n-type field-effect transistor with ultrahigh electron mobility via aluminum adatoms doping. Small, 2017, 13: 1602909

    Article  Google Scholar 

  73. Koenig S P, Doganov R A, Seixas L, et al. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett, 2016, 16: 2145–2151

    Article  Google Scholar 

  74. Du Y, Liu H, Deng Y, et al. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano, 2014, 8: 10035–10042

    Article  Google Scholar 

  75. Wang Y, Wu P, Wang Z, et al. Air-stable low-symmetry narrow-bandgap 2D sulfide niobium for polarization photodetection. Adv Mater, 2020, 32: 2005037

    Article  Google Scholar 

  76. Hu W-D, Li Q, Chen X-S, et al. Recent progress on advanced infrared photodetectors. Acta Phys Sin, 2019, 68: 120701

    Article  Google Scholar 

  77. Wang Z, Wang P, Wang F, et al. A noble metal dichalcogenide for high-performance field-effect transistors and broadband photodetectors. Adv Funct Mater, 2020, 30: 1907945

    Article  Google Scholar 

  78. Ziletti A, Carvalho A, Trevisanutto P E, et al. Phosphorene oxides: bandgap engineering of phosphorene by oxidation. Phys Rev B, 2015, 91: 085407

    Article  Google Scholar 

  79. Ziletti A, Carvalho A, Campbell D K, et al. Oxygen defects in phosphorene. Phys Rev Lett, 2015, 114: 046801

    Article  Google Scholar 

  80. Utt K L, Rivero P, Mehboudi M, et al. Intrinsic defects, fluctuations of the local shape, and the photo-oxidation of black phosphorus. ACS Cent Sci, 2015, 1: 320–327

    Article  Google Scholar 

  81. Yang T, Dong B, Wang J, et al. Interpreting core-level spectra of oxidizing phosphorene: theory and experiment. Phys Rev B, 2015, 92: 125412

    Article  Google Scholar 

  82. Favron A, Gaufrés E, Fossard F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater, 2015, 14: 826–832

    Article  Google Scholar 

  83. Wood J D, Wells S A, Jariwala D, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett, 2014, 14: 6964–6970

    Article  Google Scholar 

  84. Peng R, Khaliji K, Youngblood N, et al. Midinfrared electro-optic modulation in few-layer black phosphorus. Nano Lett, 2017, 17: 6315–6320

    Article  Google Scholar 

  85. Cao Y, Mishchenko A, Yu G L, et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett, 2015, 15: 4914–4921

    Article  Google Scholar 

  86. Viti L, Hu J, Coquillat D, et al. Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies. Adv Mater, 2016, 28: 7390–7396

    Article  Google Scholar 

  87. Illarionov Y Y, Waltl M, Rzepa G, et al. Long-term stability and reliability of black phosphorus field-effect transistors. ACS Nano, 2016, 10: 9543–9549

    Article  Google Scholar 

  88. Artel V, Guo Q, Cohen H, et al. Protective molecular passivation of black phosphorus. npj 2D Mater Appl, 2017, 1: 6

    Article  Google Scholar 

  89. Cai Y, Ke Q, Zhang G, et al. Highly itinerant atomic vacancies in phosphorene. J Am Chem Soc, 2016, 138: 10199–10206

    Article  Google Scholar 

  90. Hu W, Yang J. Defects in phosphorene. J Phys Chem C, 2015, 119: 20474–20480

    Article  Google Scholar 

  91. Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat Nanotech, 2014, 9: 273–278

    Article  Google Scholar 

  92. Roy K, Padmanabhan M, Goswami S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotech, 2013, 8: 826–830

    Article  Google Scholar 

  93. Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotech, 2013, 8: 497–501

    Article  Google Scholar 

  94. Huo N, Konstantatos G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nat Commun, 2017, 8: 572

    Article  Google Scholar 

  95. Tu L, Cao R, Wang X, et al. Ultrasensitive negative capacitance phototransistors. Nat Commun, 2020, 11: 101

    Article  Google Scholar 

  96. Deng Y, Luo Z, Conrad N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano, 2014, 8: 8292–8299

    Article  Google Scholar 

  97. Yuan H, Liu X, Afshinmanesh F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat Nanotech, 2015, 10: 707–713

    Article  Google Scholar 

  98. Guo Q, Pospischil A, Bhuiyan M, et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett, 2016, 16: 4648–4655

    Article  Google Scholar 

  99. Ye L, Li H, Chen Z, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics, 2016, 3: 692–699

    Article  Google Scholar 

  100. Miao J, Zhang L, Wang C. Black phosphorus electronic and optoelectronic devices. 2D Mater, 2019, 6: 032003

    Article  Google Scholar 

  101. Venuthurumilli P K, Ye P D, Xu X. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano, 2018, 12: 4861–4867

    Article  Google Scholar 

  102. Li H, Ye L, Xu J. High-performance broadband floating-base bipolar phototransistor based on WSe2/BP/MoS2 heterostructure. ACS Photonics, 2017, 4: 823–829

    Article  Google Scholar 

  103. Miao J, Zhang S, Cai L, et al. Black phosphorus schottky diodes: channel length scaling and application as photodetectors. Adv Electron Mater, 2016, 2: 1500346

    Article  Google Scholar 

  104. Youngblood N, Chen C, Koester S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat Photon, 2015, 9: 247–252

    Article  Google Scholar 

  105. Xu Y, Liu C, Guo C, et al. High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction. Nano Energy, 2020, 70: 104518

    Article  Google Scholar 

  106. Hsu A L, Herring P K, Gabor N M, et al. Graphene-based thermopile for thermal imaging applications. Nano Lett, 2015, 15: 7211–7216

    Article  Google Scholar 

  107. Huang L, Ang K W. Black phosphorus photonics toward on-chip applications. Appl Phys Rev, 2020, 7: 031302

    Article  Google Scholar 

  108. Zhao S, Wu J, Jin K, et al. Highly polarized and fast photoresponse of black phosphorus-InSe vertical p-n heterojunctions. Adv Funct Mater, 2018, 28: 1802011

    Article  Google Scholar 

  109. Ma Y, Dong B, Wei J, et al. High-responsivity mid-infrared black phosphorus slow light waveguide photodetector. Adv Opt Mater, 2020, 8: 2000337

    Article  Google Scholar 

  110. Huang L, Dong B, Guo X, et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS Nano, 2019, 13: 913–921

    Article  Google Scholar 

  111. Yin Y, Cao R, Guo J, et al. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 µm. Laser Photon Rev, 2019, 556: 1900032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Ming Sun or Hui-Ming Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, R., Feng, S., Sun, DM. et al. Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus. Sci. China Inf. Sci. 64, 140402 (2021). https://doi.org/10.1007/s11432-020-3172-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3172-1

Keywords

Navigation