Skip to main content
Log in

SH Wavelet Propagation Through the Random Distribution of Aligned Line Cracks Based on the Radiative Transfer Theory

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This paper studies the propagation of SH wavelet intensity through the random distribution of aligned line cracks in a two-dimensional (2-D) homogeneous medium as the simplest mathematical model of the heterogeneous Earth medium. The scattering process of a single line crack is described by Mathieu functions. The random distribution of cracks is well represented by the scattering coefficient, that is, the scattering power per unit area. Two methods are proposed for the derivation of the space–time distribution of the intensity Green function for the unit isotropic radiation from a point source: one is the single scattering approximation and the other is the Monte Carlo simulation. The former and the latter are deterministic and stochastic methods, respectively. In the case that the wavenumber is larger than the reciprocal of the crack length, synthesized time traces show that direct wavelets near the ray direction parallel to the line cracks decrease according to the geometrical decay with increasing travel distance as if there exists a transparent channel along the crack line direction; however, those near the direction normal to the line cracks decrease more rapidly because of strong scattering attenuation. At large lapse times, multiple scattering produces a swelling around the source location, which is prolonged to the crack line direction. Those characteristics well reflect the anisotropy of the line crack scattering. The Monte Carlo simulation presented here could be a fundamental base for the study of more realistic crack scattering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abramowitz, M., & Stegun, I. A. (1970). Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover.

    Google Scholar 

  • Asano, S. (1979). Light scattering properties of spheroidal particles. Applied Optics, 18(5), 712–723.

    Article  Google Scholar 

  • Asano, S., & Yamamoto, G. (1975). Light scattering by a spheroidal particle. Applied Optics, 14(1), 29–49.

    Article  Google Scholar 

  • Benites, R., Aki, K., & Yomogida, K. (1992). Multiple scattering of SH waves in 2-D media with many cavities. Pure and Applied Geophysics, 138, 353–390. https://doi.org/10.1007/BF00876878.

    Article  Google Scholar 

  • Casella, G., Robert, C .P., & Wells, M. T. (2004). Generalized accept–reject sampling schemes. In: A Festschrift for Herman Rubin, Institute of Mathematical Statistics, pp 342–347.

  • Emoto, K., Sato, H., & Nishimura, T. (2011). Synthesis and applicable condition of vector wave envelopes in layered random elastic media with anisotropic autocorrelation function based on the Markov approximation. Geophysical Journal International, 188, 325–333. https://doi.org/10.1093/gji/ggt125.

    Article  Google Scholar 

  • Fehler, M., & Aki, K. (1978). Numerical study of diffraction of plane elastic waves by a finite crack with application to location of a magma lens. Bulletin of the Seismological Society of America, 68(3), 573–598.

    Article  Google Scholar 

  • Foldy, L. L. (1945). The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Physical Review, 67, 107–119. https://doi.org/10.1103/PhysRev.67.107.

    Article  Google Scholar 

  • Fukushima, Y., Nishizawa, H., Sato, H., & Ohtake, M. (2003). Laboratory study on scattering characteristics of shear waves in rock samples. Bulletin of the Seismological Society of America, 93, 253–263. https://doi.org/10.1785/0120020074.

    Article  Google Scholar 

  • Gillet, K., Margerin, L., Calvet, M., & Monnereau, M. (2017). Scattering attenuation profile of the moon: Implications for shallow moonquakes and the structure of the megaregolith. Physics of the Earth and Planetary Interiors, 262, 28–40.

    Article  Google Scholar 

  • Guo, J., Shuai, D., Wei, J., Ding, P., & Gurevich, B. (2018). P-wave dispersion and attenuation due to scattering by aligned fluid saturated fractures with finite thickness: theory and experiment. Geophysical Journal International, 215(3), 2114–2133.

    Article  Google Scholar 

  • Gusev, A., & Abubakirov, I. (1996). Simulated envelopes of non-isotropically scattered body waves as compared to observed ones: another manifestation of fractal heterogeneity. Geophysical Journal, 1001(127), 9–60. https://doi.org/10.1111/j.1365-246X.1996.tb01534.x.

    Article  Google Scholar 

  • Harumi, K. (1962). Scattering of plane waves by a cavity ribbon in a solid. Journal of Applied Physics, 33(12), 3588–3593.

    Article  Google Scholar 

  • Hoshiba, M. (1991). Simulation of multiple-scattered coda wave excitation based on the energy conservation law. Physics of the Earth and Planetary Interiors, 67, 123–136. https://doi.org/10.1016/0031-9201(91)90066-Q.

    Article  Google Scholar 

  • Ikebe, S. (2019). Mathieu function package (ver. 5.04) for Mathematica. http://math-functions-1.watson.jp/. Accessed 1 Mar 2021.

  • Ikelle, L. T., Yung, S. K., & Daube, F. (1993). 2-D random media with ellipsoidal autocorrelation functions. Geophysics, 58, 1359–1372. https://doi.org/10.1190/1.1443518.

    Article  Google Scholar 

  • Ishiyama, K., Kumamoto, A., Ono, T., Yamaguchi, Y., Haruyama, J., Ohtake, M., et al. (2013). Estimation of the permittivity and porosity of the lunar uppermost basalt layer based on observations of impact craters by SELENE. Journal of Geophysical Research: Planets, 118(7), 1453–1467.

    Google Scholar 

  • Kawahara, J., & Yamashita, T. (1992). Scattering of elastic waves by a fracture zone containing randomly distributed cracks. Pure and Applied Geophysics, 139, 121–144. https://doi.org/10.1007/BF00876828.

    Article  Google Scholar 

  • Kawahara, J., Ohno, T., & Yomogida, K. (2009). Attenuation and dispersion of antiplane shear waves due to scattering by many two-dimensional cavities. The Journal of the Acoustical Society of America, 125, 3589. https://doi.org/10.1121/1.3124779.

    Article  Google Scholar 

  • Kikuchi, M. (1981a). Dispersion and attenuation of elastic waves due to multiple scattering from cracks. Physics of the Earth and Planetary Interiors, 27, 100–105. https://doi.org/10.1016/0031-9201(81)90037-6.

    Article  Google Scholar 

  • Kikuchi, M. (1981b). Dispersion and attenuation of elastic waves due to multiple scattering from inclusions. Physics of the Earth and Planetary Interiors, 25(2), 159–162.

    Article  Google Scholar 

  • Li, Y. G., Aki, K., Adams, D., Hasemi, A., & Lee, W. H. (1994). Seismic guided waves trapped in the fault zone of the landers, California, earthquake of 1992. Journal of Geophysical Research: Solid Earth, 99(B6), 11705–11722.

    Article  Google Scholar 

  • Margerin, L. (2005). Introduction to radiative transfer of seismic waves, in “Seismic Earth: Array Analysis of Broadband Seismograms” (Eds. A. Levander and G. Nolet), vol 157, Geophysical Monograph-American Geophysical Union (pp 229–252).

  • Margerin, L. (2006). Attenuation, transport and diffusion of scalar waves in textured random media. Tectonophysics, 416(1–4), 229–244.

    Article  Google Scholar 

  • McLachlan, N. W. (1964). Theory and application of Mathieu functions. Dover.

    Google Scholar 

  • Morse, P. M., & Feshbach, H. (1953). Methods of theoretical physics, , vols. i and ii. New York: McGraw-Hill.

    Google Scholar 

  • Morse, P. M., & Rubenstein, P. J. (1938). The diffraction of waves by ribbons and by slits. Physical Review, 54(11), 895.

    Article  Google Scholar 

  • Mow, C. C., & Pao, Y. H. (1971). The diffraction of elastic waves and dynamic stress concentrations (Rand Corp. Santa Monica, Calif.). https://www.rand.org/pubs/reports/R0482.html. Accessed 1 Mar 2021

  • Murai, Y., Kawahara, J., & Yamashita, T. (1995). Multiple scattering of SH waves in 2-D elastic media with distributed cracks. Geophysical Journal International, 122, 925–937. https://doi.org/10.1111/j.1365-246X.1995.tb06846.x.

    Article  Google Scholar 

  • Nishizawa, O., & Fukushima, Y. (2008). Laboratory experiments of seismic wave propagation in random heterogeneous media. In H. Sato & M. Fehler (Eds.), Chap 8, Earth heterogeneity and scattering effects on seismic waves, advances in geophysics (Series Ed. R. Dmowska) (Vol. 50, pp. 219–246). Academic Press.

    Chapter  Google Scholar 

  • Olver, F., Olde Daalhuis, A., Lozier, D., Schneider, B., Boisvert, R., Clark, C., Miller, B., BRand Saunders, Cohl, H., McClain, M. (2019). “NIST Digital Library of Mathematical Functions (Release 1.0.25 of 2019-12-15),” http://dlmf.nist.gov/. Accessed 1 Mar 2021

  • Paasschens, J. C. J. (1997). Solution of the time-dependent Boltzmann equation. Physical Review E, 56(1), 1135–1141. https://doi.org/10.1103/PhysRevE.56.1135.

    Article  Google Scholar 

  • Przybilla, J., & Korn, M. (2008). Monte Carlo simulation of radiative energy transfer in continuous elastic random media-three-component envelopes and numerical validation. Geophysical Journal International, 173(2), 566–576. https://doi.org/10.1111/j.1365-246X.2008.03747.x.

    Article  Google Scholar 

  • Saito, T., Sato, H., Ohtake, M., & Obara, K. (2005). Unified explanation of envelope broadening and maximum-amplitude decay of high-frequency seismograms based on the envelope simulation using the Markov approximation: forearc side of the volcanic front in northeastern Honshu, Japan. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2004JB003225.

    Article  Google Scholar 

  • Sánchez Sesma, F. J., & Iturrarán Viveros, U. (2001). Scattering and diffraction of SH waves by a finite crack: an analytical solution. Geophysical Journal International, 145(3), 749–758.

    Article  Google Scholar 

  • Sano, O., Kudo, Y., & Mizuta, Y. (1992). Experimental determination of elastic constants of Oshima granite, Barre granite, and Chelmsford granite. Journal of Geophysical Research: Solid Earth, 97(B3), 3367–3379.

    Article  Google Scholar 

  • Sato, H. (1977). Energy propagation including scattering effects: single isotropic scattering approximation. Journal of Physics of the Earth, 25, 27–41.

    Article  Google Scholar 

  • Sato, H. (1989). Broadening of seismogram envelopes in the randomly inhomogeneous lithosphere based on the parabolic approximation: southeastern Honshu, Japan. Journal of Geophysical Research, 94, 17735–17747. https://doi.org/10.1029/JB094iB12p17735.

    Article  Google Scholar 

  • Sato, H. (2008). Synthesis of vector-wave envelopes in 3-D random media characterized by a nonisotropic Gaussian ACF based on the Markov approximation. Journal of Geophysical Research, 113(B8), B08304. https://doi.org/10.1029/2007JB005524.

    Article  Google Scholar 

  • Sato, H. (2019a). Isotropic scattering coefficient of the solid earth. Geophysical Journal International, 218, 2079–2088. https://doi.org/10.1093/gji/ggz266.

    Article  Google Scholar 

  • Sato, H. (2019b). Power spectra of random heterogeneities in the solid earth. Solid Earth, 10(1), 275–292. https://doi.org/10.5194/se-10-275-2019.

    Article  Google Scholar 

  • Sato, H., & Emoto, K. (2018). Synthesis of a scalar wavelet intensity propagating through von Kármán-type random media: radiative transfer theory using the Born and phase-screen approximations. Geophysical Journal International, 215(2), 909–923.

    Google Scholar 

  • Sato, H., & Hayakawa, T. (2014). Radiative transfer theory for a random distribution of low velocity spheres as resonant isotropic scatterers. Geophysical Journal International, 199, 41–59. https://doi.org/10.1093/gji/ggu243.

    Article  Google Scholar 

  • Sato, H., & Korn, M. (2007). Envelope syntheses of cylindrical vector-waves in 2-D random elastic media based on the Markov approximation. Earth Planets Space, 59, 4209–219.

    Google Scholar 

  • Sato, H., Fehler, M. C., & Maeda, T. (2012). Seismic wave propagation and scattering in the heterogeneous earth (2nd ed.). Springer.

    Book  Google Scholar 

  • Sens-Schönfelder, C., Margerin, L., & Campillo, M. (2009). Laterally heterogeneous scattering explains Lg blockage in the Pyrenees. Journal of Geophysical Research, 114, B07309. https://doi.org/10.1029/2008JB006107.

    Article  Google Scholar 

  • Sezawa, K. (1927). Scattering of elastic waves and some allied problems. Bulletin of the Earthquake Research Institute, Tokyo Imperial University, 3, 19–41.

    Google Scholar 

  • Shang, T., & Gao, L. (1988). Transportation theory of multiple scattering and its application to seismic coda waves of impulsive source. Scientia Sinica (series B, China), 31, 1503–1514.

    Google Scholar 

  • Suzuki, Y., Kawahara, J., Okamoto, T., & Miyashita, K. (2006). Simulations of SH wave scattering due to cracks by the 2-D finite difference method. Earth Planets Space, 58(5), 555.

    Article  Google Scholar 

  • Suzuki, Y., Shiina, T., Kawahara, J., Okamoto, T., & Miyashita, K. (2013). Simulations of P–SV wave scattering due to cracks by the 2-D finite difference method. Earth, Planets and Space, 65(12), 1425–1439.

    Article  Google Scholar 

  • Takahashi, T., Sato, H., & Nishimura, T. (2008). Recursive formula for the peak delay time with travel distance in von Karman type non-uniform random media on the basis of the Markov approximation. Geophysical Journal International, 173(2), 534–545. https://doi.org/10.1111/j.1365-246X.2008.03739.x.

    Article  Google Scholar 

  • Takahashi, T., Sato, H., Nishimura, T., & Obara, K. (2009). Tomographic inversion of the peak delay times to reveal random velocity fluctuations in the lithosphere: method and application to northeastern Japan. Geophysical Journal International, 178(47), 1437–1455. https://doi.org/10.1111/j.1365-246X.2009.04227.x.

    Article  Google Scholar 

  • Yamashita, T. (1990). Attenuation and dispersion of SH waves due to scattering by randomly distributed cracks. Pure and Applied Geophysics, 132, 545–568. https://doi.org/10.1007/BF00876929.

    Article  Google Scholar 

  • Yomogida, K., & Benites, R. (2002). Scattering of seismic waves by cracks with the boundary integral method. Pure and Applied Geophysics, 159(7), 1771–1789. https://doi.org/10.1007/s00024-002-8708-9.

    Article  Google Scholar 

  • Yoshimoto, K. (2000). Monte-Carlo simulation of seismogram envelope in scattering media. Journal of Geophysical Research, 105, 6153–6161. https://doi.org/10.1029/1999JB900437.

    Article  Google Scholar 

  • Zeng, Y., Su, F., & Aki, K. (1991). Scattering wave energy propagation in a random isotropic scattering medium 1. Theory Journal of Geophysical Research, 96, 607–619. https://doi.org/10.1029/90JB02012.

    Article  Google Scholar 

  • Zhu, Z., Burns, D. R., Brown, S., & Fehler, M. (2015). Laboratory experimental studies of seismic scattering from fractures. Geophysical Journal International, 201(1), 291–303.

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to two anonymous reviewers. Their comments and suggestions were helpful for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruo Sato.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, H. SH Wavelet Propagation Through the Random Distribution of Aligned Line Cracks Based on the Radiative Transfer Theory. Pure Appl. Geophys. 178, 1047–1061 (2021). https://doi.org/10.1007/s00024-021-02680-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02680-8

Keywords

Navigation