Skip to main content
Log in

Estimation of robot states with poisson process based on EKF approximate of Kushner filter: a completely coordinate free Lie group approach

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, a Lie coordinate-free torque based Euler–Lagrange equations of motion are developed for a 3-D link (3-DOF) robot. Intentional torque and jerky torque (non-intentional torque) are considered as the inputs to the dynamic profile of the robot. The jerky torque is modelled as a superposition of compound Poisson processes, which is a unique feature. The state vector of the robot, i.e., angular position and angular velocity vector, is thus a Markov process whose transition probability generator can be expressed in terms of the rate of the compound Poisson process that defines the jerky torque. Proof of frame invariance is provided to support the coordinate-free robot dynamics profile. Noise-free measurement is investigated as an ideal case. Angular position measurement is considered with white Gaussian noise. Further, an implementable finite-dimensional EKF approximate to Kushner–Kallianpur filter is obtained to estimate the robot state vector. Finally, the simulations are implemented on commercially available Omni bundle robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

R(t):

Rotation matrix after time t

SO(3):

The group of proper rotations of 3-D space

V(tr):

Velocity function

K(t):

Link kinetic energy

J :

Moment of inertia tensor, which is constant

\(\rho\) :

Density of 3-D link

\(N_k(t)\) :

Poisson process

\(\begin{bmatrix} \alpha _k \\ \beta _k \\ \gamma _k \end{bmatrix}\) :

Strength of kth Poisson jerk torque

\(\tau _\phi , \tau _\theta ,\tau _\psi\) :

Torque components

\({\hat{e}}_3\) :

Unit vector along ‘z’ direction

\({\mathcal {L}}\) :

Lagrangian

[XY]:

Commutation of matrices X, Y

\(X_1,X_2,X_3\) :

Lie group generator of SO(3) group

\(\phi (t),\theta (t),\psi (t)\) :

Angular positions

\(U(\phi ,\theta ,\psi )\) :

Gravitational potential energy

\(\Delta\) :

Time discretization interval

W(t):

White compound poisson noise process

\({\mathbb {E}}\) :

Expectation operator

\(\lambda _k\) :

Rate of Poisson process \(N_k(t)\)

\(P_{\delta W}\) :

PDF of compound Poisson noise differential

ml, ML :

Maximum likelihood

\(\omega (t)\) :

Angular velocity

\({\hat{q}}_t\) :

Estimate of q(t) given measurements upto time t

\({\hat{V}}_t\) :

Estimate of V(t) given measurements upto time t

Cov(X):

Covariance matrix of random vector X

\(\pi _t\) :

Conditional expectation of measurements upto time t

\(Z_t\) :

Measurements upto time t

dz(t):

Measurements differential

K :

Infinitesimal generator of the Markov process \(\begin{bmatrix} q(t)\\ \omega (t) \end{bmatrix}\)

\(dv_t\) :

Differential of measurements noise

\(h_t(q,V)\) :

Measurements observable at time t in the absence of measurement noise

\(H_t\) :

Jacobian matrix of \(h_t\) equivalent to state estimation \(({\hat{q}}_t,{\hat{V}}_t)\)

P(t):

State estimation error covariance matrix

F(qV):

Driving force/drift of (qV)

G(q):

Poisson jerk noise coefficients matrix

ad(X):

Adjoint operator of the Lie-algebra element X

\(\epsilon (kmr)\) :

Completely antisymmetric symbol. \(\epsilon (abc) = 0\) if any of the two indices of abc are equal

\(C_{km}\) :

Coefficients of the quadratic form in the kinetic energy matrix relative to modified angular velocities \(\alpha ,\beta ,\gamma\)

\(M_{ab}\) :

Mass moment of kinetic matrices relative to angular velocities \({\dot{\phi }},{\dot{\theta }},{\dot{\psi }}\)

\({\mathbb {T}}\) :

Anti-symmetric torque tensor/matrix

\(\tilde{{\mathbb {T}}}\) :

Time integral of \({\mathbb {T}}\)

\(\Omega (t)\) :

Anti-symmetric angular velocity tensor/matrix

WGN:

White Gaussian noise

WCPN:

White Compound Poisson noise

CRLB:

Cramer–Rao lower bound

MLE:

Maximum likelihood estimation

PDF:

Probability density function

References

  1. Piazzi A, Visioli A (2000) Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans Ind Electron 47:140–149. https://doi.org/10.1109/41.824136

    Article  Google Scholar 

  2. Gallardo-Alvarado J (2014) Hyper-jerk analysis of robot manipulators. J Intell Robot Syst 74(3–4):625–641. https://doi.org/10.1007/s10846-013-9849-z

    Article  Google Scholar 

  3. Macfarlane S, Croft EA (2003) Jerk-bounded manipulator trajectory planning: design for real-time applications. IEEE Trans Robot Autom 19(1):42–52. https://doi.org/10.1109/TRA.2002.807548

    Article  Google Scholar 

  4. Constantinescu D, Croft EA (2000) Smooth and time-optimal trajectory planning for industrial manipulators along specified paths. J Robot Syst 17:233–249

    Article  Google Scholar 

  5. Piazzi A, Visioli A (2000) Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans Ind Electron 47:140–149

    Article  Google Scholar 

  6. Zanotto V, Gasparetto A, Lanzutti A et al (2011) Experimental validation of minimum time-jerk algorithms for industrial robots. J Intell Robot Syst 64(2):197–219. https://doi.org/10.1007/s10846-010-9533-5

    Article  Google Scholar 

  7. Singla R, Parthasarathy H, Agarwal V (2017) Classical robots perturbed by Levy processes: analysis and Levy disturbance rejection methods. Nonlinear Dyn 89(1):553–575. https://doi.org/10.1007/s11071-017-3471-8

    Article  MATH  Google Scholar 

  8. Yang K, Yang W, Wang C (2018) Inverse dynamic analysis and position error evaluation of the heavy-duty industrial robot with elastic joints: an efficient approach based on Lie group. Nonlinear Dyn 93(2):487–504. https://doi.org/10.1007/s11071-018-4205-2

    Article  Google Scholar 

  9. Rana R, Gaur P, Agarwal V, Parthasarathy H (2019) Tremor estimation and removal in robot-assisted surgery using Lie groups and EKF. Robotica 37(11):1904–1921

    Article  Google Scholar 

  10. Chen G, Wang H, Lin Z (2014) Determination of the identifiable parameters in robot calibration based on the POE formula. IEEE Trans Robot 30(5):1066–1077. https://doi.org/10.1109/TRO.2014.2319560

    Article  Google Scholar 

  11. Siciliano B, Khatib O (2016) Springer handbook of robotics. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-32552-1

  12. Kushner HJ (1964) On the dynamical equations of conditional probability density functions, with applications to optimal stochastic control theory. J Math Anal Appl 8(2):332–344. https://doi.org/10.1016/0022-247X(64)90073-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Kushner HJ (1967) Dynamical equations for optimal nonlinear filtering. J Differ Equ 3(2):179–190. https://doi.org/10.1016/0022-0396(67)90023-X

    Article  MathSciNet  MATH  Google Scholar 

  14. Maroulas V, Xiong J (2013) Large deviations for optimal filtering with fractional Brownian motion. Stoch Process Appl 123(6):2340–2352. https://doi.org/10.1016/j.spa.2013.02.012

    Article  MathSciNet  MATH  Google Scholar 

  15. Kallianpur G (1980) Stochastic filtering theory. Springer, Berlin

    Book  Google Scholar 

  16. Barrau A, Bonnabel S (2018) Invariant Kalman filtering. Ann Rev Control Robot Auton Syst 1:237–257. https://doi.org/10.1146/annurev-control-060117-105010

    Article  Google Scholar 

  17. Vallée C, Dumitriu D (2001) The Lagrange multipliers associated with the rotation matrix characterizing the motion of a rigid body about its center of mass’’. J Appl Math Mech 65(5):731–739. https://doi.org/10.1016/S0021-8928(01)00079-X

    Article  MathSciNet  MATH  Google Scholar 

  18. Gallier J, Quaintance J (2020) Adjoint representations and the derivative of exp. In: Differential geometry and Lie groups. Geometry and Computing, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-46040-2_3

  19. Varadarajan VS (2013) Lie groups, Lie algebras, and their representations, 1st edn. Springer New York. https://doi.org/10.1007/978-1-4612-1126-6.

  20. Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley. https://doi.org/10.1002/9780470316436

  21. Van Trees HL, Bell KL, Tian Z (2013) 5.2.2 and 5.2.1. In: Detection estimation and modulation theory, part I: detection, estimation, and filtering theory, 2nd Edition. ISBN: 978-1-118-53992-7

  22. Lytvynov EW, Rebenko AL, Shchepan’ur GV (1997) Wick calculus on spaces of generalized functions of compound Poisson white noise. Rep Math Phys 39(2):219–248. https://doi.org/10.1016/S0034-4877(97)88002-0

    Article  MathSciNet  MATH  Google Scholar 

  23. Grigoriu M (2009) Numerical solution of stochastic differential equations with Poisson and Levy white noise. Phys Rev E 80(2):026704. https://doi.org/10.1103/PhysRevE.80.026704

    Article  MathSciNet  Google Scholar 

  24. Grigoriu M (2004) Dynamic systems with poisson white noise. Nonlinear Dyn 36(2–4):255–266. https://doi.org/10.1023/B:NODY.0000045518.13177.3c

    Article  MathSciNet  MATH  Google Scholar 

  25. 6 Nonlinear Filtering Theory, Editor(s): Andrew H. Jazwinski, Mathematics in science and engineering, Elsevier, Volume 64, 1970, Pages 162–193, ISSN 0076-5392, ISBN 9780123815507. https://doi.org/10.1016/S0076-5392(09)60375-1

  26. Applebaum D (2009) Levy processes and stochastic calculus, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  27. Rana R, Agarwal V, Gaur P, Parthasarathy H (2020) Design of optimal UKF state observer–controller for stochastic dynamical systems. IEEE Trans Ind Appl. https://doi.org/10.1109/TIA.2020.3048647

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Rana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, R., Gaur, P., Agarwal, V. et al. Estimation of robot states with poisson process based on EKF approximate of Kushner filter: a completely coordinate free Lie group approach. Meccanica 56, 1239–1261 (2021). https://doi.org/10.1007/s11012-021-01325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01325-3

Keywords

Navigation