Skip to main content

Advertisement

Log in

Integrating Transcriptomics and Metabolomics to Characterize Metabolic Regulation to Elevated CO2 in Chlamydomonas Reinhardtii

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

With atmospheric CO2 increasing, a large amount of CO2 is absorbed by oceans and lakes, which changes the carbonate system and affects the survival of aquatic plants, especially microalgae. The main aim of our study was to explore the responses of Chlamydomonas reinhardtii (Chlorophyceae) to elevated CO2 by combined transcriptome and metabolome analysis under three different scenarios: control (CK, 400 ppm), short-term elevated CO2 (ST, 1000 ppm), and long-term elevated CO2 (LT, 1000 ppm). The transcriptomic data showed moderate changes between ST and CK. However, metabolic analysis indicated that fatty acids (FAs) and partial amino acids (AAs) were increased under ST. There was a global downregulation of genes involved in photosynthesis, glycolysis, lipid metabolism, and nitrogen metabolism but increase in the TCA cycle and β-oxidation under LT. Integrated transcriptome and metabolome analyses demonstrated that the nutritional constituents (FAs, AAs) under LT were poor compared with CK, and most genes and metabolites involved in C and N metabolism were significantly downregulated. However, the growth and photosynthesis of cells under LT increased significantly. Thus, C. reinhardtii could form a specific adaptive evolution to elevated CO2, affecting future biogeochemical cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CK:

Control

ST:

Short-term acidification

LT:

Long-term acidification

Ppm:

Parts per million

LC:

Low concentrations of CO2

HC:

High concentrations of CO2

UPLC-Q-TOF-MS:

Ultra-performance liquid chromatograph coupled to quadrupole-time of flight mass spectrometry

CCM:

CO2 concentrating mechanism

FPKM:

Fragments per kilobase million mapped reads

GO:

Gene ontology

KEGG:

Kyoto Encyclopedia of Gene and Genomes

PCA:

Principal component analysis

PLS-DA:

Partial least squares-discriminant analysis

OPLS-DA:

Orthogonal projections for latent structures-discriminant analysis

DEG:

Differentially expressed gene

SDM:

Significantly different metabolite

VIP:

Variable importance for the projection

TAG:

Triacylglycerol

FA:

Fatty acid

AA:

Amino acid

References

  • Alberts AW, Vagelos PR (1968) Acetyl CoA carboxylase. i. Requirement for two protein fractions. Pro Natl Acad Sci USA 59:561–568

    Article  CAS  Google Scholar 

  • Allen AE, Ward BB, Song B (2005) Characterization of diatom (Bacillariophyceae) nitrate reductase genes and their detection in marine phytoplankton communities. J Phycol 41:95–104

    Article  CAS  Google Scholar 

  • Bailly J, Coleman JR (1988) Effect of CO2 concentration on protein biosynthesis and carbonic anhydrase expression in Chlamydomonas reinhardtii. Plant Physiol 87:833–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blatti JL, Michaud J, Burkart MD (2013) Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr Opin Chem Biol 17:496–505

    Article  CAS  PubMed  Google Scholar 

  • Bogaert KA, Perez E, Rumin J, Giltay A, Carone M, Coosemans N, Radoux M, Eppe G, Levine RD, Remacle F, Remacle C (2019) Metabolic, physiological, and transcriptomics analysis of batch cultures of the green microalga Chlamydomonas grown on different acetate concentrations. Cells 8:1367

    Article  CAS  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler C, Vardi A, Allen AE (2010) Oceanographic and biogeochemical insights from diatom genomes. Annu Rev Mar Sci 2:333–365

    Article  Google Scholar 

  • Brennan G, Collins S (2015) Growth responses of a green alga to multiple environmental drivers. Nat Clim Chang 5:892–897

    Article  Google Scholar 

  • Cheng J, Li K, Zhu Y, Yang W, Zhou J, Cen K (2017) Transcriptome sequencing and metabolic pathways of astaxanthin accumulated in Haematococcus pluvialis mutant under 15% CO2. Bioresour Technol 228:99–105

    Article  CAS  PubMed  Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    Article  CAS  PubMed  Google Scholar 

  • Choi SP, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101:5330–5336

    Article  CAS  PubMed  Google Scholar 

  • Collins S, Bell G (2004) Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431:566

    Article  CAS  PubMed  Google Scholar 

  • Collins S, Sultemeyer D, Bell G (2006) Changes in C uptake in populations of Chlamydomonas reinhardtii selected at high CO2. Plant Cell Environ 29:1812–1819

    Article  CAS  PubMed  Google Scholar 

  • Davis M, Fiehn O, Durnford DG (2013) Metabolic acclimation to excess light intensity in Chlamydomonas reinhardtii. Plant Cell Environ 36:1391–1405

    Article  CAS  PubMed  Google Scholar 

  • Devi MP, Mohan SV (2012) CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval. Bioresour Technol 112:116–123

    Article  PubMed  CAS  Google Scholar 

  • Dong T, Han R, Yu J, Zhu M, Zhang Y, Gong Y, Li Z (2019) Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis, L.). Food Chem 271:18–28

    Article  CAS  PubMed  Google Scholar 

  • Driver T, Trivedi DK, McIntosh OA, Dean AP, Goodacre R, Pittman JK (2017) Two glycerol-3-phosphate dehydrogenases from Chlamydomonas have distinct roles in lipid metabolism. Plant Physiol 174:2083–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson M, Villand P, Gardeström P, Samuelsson G (1998) Induction and regulation of expression of a low-CO2-induced mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 116:637–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Xu H, Li Y (2016) Transcriptome-based global analysis of gene expression in response to carbon dioxide deprivation in the green algae Chlorella pyrenoidosa. Algal Res 16:12–19

    Article  Google Scholar 

  • Fan J, Xu H, Luo Y, Wan M, Huang J, Wang W, Li Y (2015) Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella. Appl Microbiol and Biotechnol 99:2451–2462

    Article  CAS  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta-Gen Subjects 990:87–92

    Article  CAS  Google Scholar 

  • Hasler CT, Jeffrey JD, Schneider EVC, Hannan KD, Tix JA, Suski CD (2017) Biological consequences of weak acidification caused by elevated carbon dioxide in freshwater ecosystems. Hydrobiologia 806:1–12

    Article  CAS  Google Scholar 

  • Hauke J, Kossowski T (2011) Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaest Geogr 30:87–93

    Article  Google Scholar 

  • Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G (2012) The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol 158:299–312

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez AM, Martinelli F, Reagan RL, Uratsu SL, Vo A, Tinoco MA, Phu ML, Chen Y, Rocke DM, Dandekar AM (2014) Transcriptome and metabolome analysis of citrus fruit to elucidate puffing disorder. Plant Sci 217–218:87–98

    Article  PubMed  CAS  Google Scholar 

  • Jin J, Zhang H, Zhang J, Liu P, Chen X, Li Z, Xu Y, Lu P, Cao P (2017) Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum. BMC Genomics 18:496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jose S, Suraishkumar GK (2016) High carbon (CO2) supply leads to elevated intracellular acetyl CoA levels and increased lipid accumulation in Chlorella vulgaris. Algal Res 19:307–315

    Article  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MS, Baek JS, Yun YS, Sim SJ, Park S, Kim SC (2006) Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. Int J Hydrog Energy 31:812–816

    Article  CAS  Google Scholar 

  • Kong QX, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem and Biotechnol 160:9–18

    Article  CAS  Google Scholar 

  • Li F, Beardall J, Collins S, Gao K (2017) Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO2 over 1800 generations. Glob Change Biol 23:127–137

    Article  Google Scholar 

  • Li J, Han D, Wang D, Ning K, Jia J, Wei L, Jing X, Huang S, Chen J, Li Y, Hu Q, Xu J (2014) Choreography of transcriptomes and lipidomes of Nannochloropsis reveals the mechanisms of oil synthesis in microalgae. Plant Cell 26:1645–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C, Wang L, Zhang Y, Zhang J, Zhang X, Ye N (2020) The effects of elevated CO2 concentrations on changes in fatty acids and amino acids of three species of microalgae. Phycologia 59:208–217

  • Mehta K, Jaiswal D, Nayak M, Prasannan CB, Wangikar PP, Srivastava S (2019) Elevated carbon dioxide levels lead to proteome-wide alterations for optimal growth of a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801. Sci Rep 9:6257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morin N, Cescut J, Beopoulos A, Lelandais G, Berre VL, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2011) Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One 6:e27966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi K, Watanabe CK, Terashima I (2015) Effects of elevated atmospheric CO2 on primary metabolite levels in Arabidopsis thaliana Col-0 leaves: an examination of metabolome data. Plant Cell Physiol 56:2069–2078

    CAS  PubMed  Google Scholar 

  • Peng H, Wei D, Chen G, Chen F (2016) Transcriptome analysis reveals global regulation in response to CO2 supplementation in oleaginous microalga Coccomyxa subellipsoidea C-169. Biotechnol Biofuels 9:151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polturak G, Heinig U, Grossman N, Battat M, Leshkowitz D, Malitsky S, Rogachev I, Aharoni A (2018) Transcriptome and metabolic profiling provides insights into betalain biosynthesis and evolution in Mirabilis jalapa. Mol Plant 11:189–204

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan V (1988) The greenhouse theory of climate change: a test by an inadvertent global experiment. Science 240:293–299

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Girard-Bascou J (2002) Algal model systems and the elucidation of photosynthetic metabolism. J Phycol 37:943–950

    Article  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruocco M, Musacchia F, Olive I, Costa MM, Barrote I, Santos R, Sanges R, Procaccini G, Silva J (2017) Genomewide transcriptional reprogramming in the seagrass Cymodocea nodosa under experimental ocean acidification. Mol Ecol 26:4241–4259

    Article  CAS  PubMed  Google Scholar 

  • Ryall K, Harper JT, Keeling PJ (2003) Plastid-derived Type II fatty acid biosynthetic enzymes in chromists. Gene 313:139–148

    Article  CAS  PubMed  Google Scholar 

  • Salie MJ, Thelen JJ (2016) Regulation and structure of the heteromeric acetyl-CoA carboxylase. Biochim Biophys Acta 1861:1207–1213

    Article  CAS  PubMed  Google Scholar 

  • Spalding MH (1989) Photosynthesis and photorespiration in freshwater green algae. Aquat Bot 34:181–209

    Article  CAS  Google Scholar 

  • Stets EG, Butman D, McDonald CP, Stackpoole SM, DeGrandpre MD, Striegl RG (2017) Carbonate buffering and metabolic controls on carbon dioxide in rivers. Glob Biogeochem Cycle 31:663–677

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley-Interscience, New York

    Google Scholar 

  • Sun Z, Chen YF, Du J (2016) Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana. Plant Biotechnol J 14:557–566

    Article  CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Beard KFM, Nunes-Nesi A, Fernie AR, Ratcliffe RG (2010) Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci 15:462–470

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131:281–285

    Article  CAS  PubMed  Google Scholar 

  • Waite M, Wakil SJ (1962) Studies on the mechanism of fatty acid synthesis. XII. Acetyl coenzyme A carboxylase. J Biol Chem 237:2750–2757

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:36–138

    Article  Google Scholar 

  • Wang N, Qian Z, Luo M, Fan S, Zhang X, Zhang L (2018) Identification of salt stress responding genes using transcriptome analysis in green alga Chlamydomonas reinhardtii. Int J Mol Sci 19:3359

    Article  PubMed Central  CAS  Google Scholar 

  • Xia JR, Gao KS (2005) Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. J Integr Plant Biol 47:668–675

    Article  CAS  Google Scholar 

  • Yang Y, Gao K (2003) Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol 15:379–389

    Article  CAS  Google Scholar 

  • Yang Y, Gao K, Xia J (2001) Effects of doubled atmospheric CO2 concentration on the growth and photosynthesis of Chlamydomonas reinhardtii (Volvocales, Chlorophyceae). Phycol Res 49:299–303

    Article  Google Scholar 

  • Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Li Q, Liu G, Xu N, Yang Y, Zeng W, Chen A, Wang S (2018) Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress. Funct Plant Biol 46:30–43

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Key Research and Development Program of China (Grant numbers 2018YFD0900703), Major Scientific and Technological Innovation Project of Shandong Provincial Key Research and Development Program under contract 2019JZZY020706, National Natural Science Foundation of China grant (31770393), Financial Fund of the Ministry of Agriculture and Rural Affairs, P. R. of China (NFZX2018), China Agriculture Research System (CARS-50), and Taishan Scholars Funding of Shandong Province.

Author information

Authors and Affiliations

Authors

Contributions

C.W.L. and N.H.Y. designed the project. Y.F.Z., Z.P.G., Y.D.R., L.W., and J.Z. performed the research. Y.F.Z., C.W.L., S.Y.T., D.X., X.W.Z., and Y.T.W. analyzed the data. Y.F.Z. and C.W.L. wrote the first draft. All authors contributed to interpreting the data and writing the manuscript. The manuscript is approved by all authors for publications. This work is the original works of the authors, and the manuscript was not previously submitted to this journal.

Corresponding authors

Correspondence to Chengwei Liang or Naihao Ye.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 840 KB)

Supplementary file2 (PDF 810 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Gu, Z., Ren, Y. et al. Integrating Transcriptomics and Metabolomics to Characterize Metabolic Regulation to Elevated CO2 in Chlamydomonas Reinhardtii. Mar Biotechnol 23, 255–275 (2021). https://doi.org/10.1007/s10126-021-10021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-021-10021-y

Keywords

Navigation