Skip to main content
Log in

Statistical property of record breaking events in the Korean housing market

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study the record statistics in the Korean housing market. To characterize the statistical properties of records, we analyze the record rate and the expected number of records for the transaction price of apartments and the volatility. From the numerical analysis, we find that the record rate of price in the overheated region is well described by the record rate obtained from the symmetric independent and identically distributed (IID) random sequence when the price change is relatively small. On the other hand, during the period for the subprime mortgage crisis, the record rate of price in the overheated regions is well approximated by that for the correlated sequence. More interestingly, when the price continuously increases the record rate of price shows a strong seasonal effect in the overheated region, while that in the normal region is simply described by the symmetric IID random sequence with constant drift on the average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We also check the raw transaction price data in each district for period I. From the data we find that the price of the apartment in every district in OR shows almost the identical behavior with Fig. 1a or b. Thus, the continuously increasing behavior for period I is not originated from the numerical artifact such as averaging or detrending of the data.

References

  1. J. Krug, J. Stat. Mech.: Theory E. 2007, P07001 (2007)

    Article  MathSciNet  Google Scholar 

  2. J. Franke, G. Wergen, J. Krug, J. Stat. Mech.: Theory E. 2010, P10013 (2010)

    Article  Google Scholar 

  3. S.N. Majumdar, R.M. Ziff, Phys. Rev. Lett. 101, 050601 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. G. Wergen, M. Bogner, J. Krug, Phys. Rev. E 83, 051109 (2011)

    Article  ADS  Google Scholar 

  5. C. Godreche, S.N. Majumdar, G. Schehr, J. Phys. A: Math. Theor. 50, 333001 (2017)

    Article  Google Scholar 

  6. G. Wergen, S.N. Majumdar, G. Schehr, Phys. Rev. E 86, 011119 (2012)

    Article  ADS  Google Scholar 

  7. E.J. Gumbel, Statistics of Extremes (Dover, New York, 1958).

    Book  MATH  Google Scholar 

  8. N.C. Matalas, Clim. Change 37, 89 (1997)

    Article  Google Scholar 

  9. S. Redner, M.R. Petersen, Phys. Rev. E 74, 061114 (2006)

    Article  ADS  Google Scholar 

  10. A. Anderson, A. Kostinski, J. Appl. Meteorol. Clim. 50, 1859 (2011)

    Article  ADS  Google Scholar 

  11. J. Krug, K. Jain, Physica A 358, 1 (2005)

    Article  ADS  Google Scholar 

  12. N. Glick, Am. Math. Mon. 85, 2 (1978)

    Article  Google Scholar 

  13. E. Ben-Naim, S. Redner, F. Vazquez, Europhys. Lett. 77, 30005 (2007)

    Article  ADS  Google Scholar 

  14. G. Wergen, Physica A 396, 114 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Joyce, D.R. Rokyta, C.J. Beisel, H.A. Orr, Genetics 180, 1627 (2008)

    Article  Google Scholar 

  16. D.R. Rokyta et al., J. Mol. Evol. 67, 368 (2008)

    Article  ADS  Google Scholar 

  17. Y. Edery, A.B. Kostinski, S.N. Majumdar, B. Berkowitz, Phys. Rev. Lett. 110, 180602 (2013)

    Article  ADS  Google Scholar 

  18. S.N. Majumdar, P. von Bomhard, J. Krug, Phys. Rev. Lett. 122, 158702 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Wergen, J. Krug, Europhys. Lett. 92, 30008 (2010)

    Article  ADS  Google Scholar 

  20. M. Karsai, K. Kaski, A.-L. Barabási, J. Kertész, Sci. Rep. 2, 1 (2012)

    Article  Google Scholar 

  21. R.N. Mantegna, H.E. Stanley, Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, 1999).

    Book  MATH  Google Scholar 

  22. J.-P. Bouchaud, M. Potters, Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management (Cambridge University Press, Cambridge, 2003).

    Book  MATH  Google Scholar 

  23. V. Plerou et al., Phys. Rev. E 60, 6519 (1999)

    Article  ADS  Google Scholar 

  24. X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, Nature 423, 267 (2003)

    Article  ADS  Google Scholar 

  25. R.N. Mantegna, H.E. Stanley, Nature 376, 46 (1995)

    Article  ADS  Google Scholar 

  26. U.A. Müller et al., J. Bank. Finance 14, 1189 (1990)

    Article  Google Scholar 

  27. Y. Liu et al., Phys. Rev. E 60, 1390 (1999)

    Article  ADS  Google Scholar 

  28. P. Cizeau et al., Physica A 245, 441 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  29. D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems, vol. 49 (Princeton University Press, Princeton, 2017).

    Book  MATH  Google Scholar 

  30. F.M. Longin, J. Bus 69, 383–408 (1996)

    Article  Google Scholar 

  31. A. Johansen, D. Sornette, Eur. Phys. J. B 1, 141 (1998)

    Article  ADS  Google Scholar 

  32. M.B. Roehner, Evol. Inst. Econ. Rev. 2, 167 (2006)

    Article  Google Scholar 

  33. P. Richmond, Physica A 375, 281 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. P. Richmond, B. Roehner, Evol. Inst. Econ. Rev. 9, 125 (2012)

    Article  Google Scholar 

  35. C.R. Cunningham, J. Urban Econ. 59, 1 (2006)

    Article  Google Scholar 

  36. Z. Adams, R. Füss, J. Hous. Econ. 19, 38 (2010)

    Article  Google Scholar 

  37. J. Aizenman, Y. Jinjarak, H. Zheng, VoxEU. org 24 (2016)

  38. G. Meen, J. Hous. Econ. 11, 1 (2002)

    Article  Google Scholar 

  39. J. Kim, J. Park, J. Choi, S.-H. Yook, J. Korean Phys. Soc. 73, 1431 (2018)

    Article  ADS  Google Scholar 

  40. https://www.data.go.kr. Accessed 8 Sept 2020

  41. https://elaw.klri.re.kr. Accessed 8 Sept 2020

  42. http://www.kosis.kr. Accessed 8 Sept 2020

  43. http://stat.molit.go.kr. Accessed 8 Sept 2020

  44. T.G. Andersen, R.A. Davis, J.-P. Kreiß, T.V. Mikosch, Handbook of Financial Time Series (Springer Science & Business Media, Berlin, 2009).

    MATH  Google Scholar 

  45. Z. Zheng et al., PLoS ONE 9, e102940 (2014)

    Article  ADS  Google Scholar 

  46. S.J. Taylor, B. Letham, Am. Stat. 72, 37 (2018)

    Article  Google Scholar 

  47. S. Kumar, N. Deo, Phys. Rev. E 86, 026101 (2012)

    Article  ADS  Google Scholar 

  48. S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing (California Technical Pub, San Diego, 1997).

    Google Scholar 

  49. J.R. Kim, G. Lim, Econ. Model. 59, 174 (2016)

    Article  Google Scholar 

  50. J. Chang, SERI Q. 2, 25 (2009)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Republic of Korea) (Grant number: NRF-2019R1F1A1058549).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Hyung Yook.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Yook, SH. Statistical property of record breaking events in the Korean housing market. J. Korean Phys. Soc. 78, 642–649 (2021). https://doi.org/10.1007/s40042-021-00123-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00123-0

Keywords

Navigation