Skip to main content
Log in

Modulating Gliclazide Release and Bioavailability Utilizing Multiparticulate Drug Delivery Systems

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

To formulate multiparticulate controlled-release alginate-gelatin (AL-GL) beads in order to modify gliclazide (GLZ) release rate.

Methods

AL-GL beads were prepared using different glutaraldehyde concentrations and dried using either air or freeze-drying method. For comparison, calcium alginate beads (AL-beads) were prepared at different temperatures. Drug incorporation efficiency, beads swelling%, drug release rate, and kinetics in gradient conditions (USP Apparatus-4) were studied. Selected AL-GL beads, as a test formulation (T), were in-vivo compared with Diamicron® 80 mg conventional tablet (R).

Results

AL-beads curing temperature was inversely proportional to GLZ incorporation efficiency and directly proportional to beads swelling%. GLZ release from AL-beads was slow in 0.1 N HCl and very fast in pH 7.4. In case of AL-GL beads, GLZ incorporation efficiency and swelling% were inversely proportional to glutaraldehyde concentration. AL-GL beads showed zero-order release of GLZ for up to 11 h. Scanning electron microscope (SEM) images of the freeze-dried beads showed a highly porous surface. Differential scanning calorimetry (DSC) and Fourier transform infra-red (FT-IR) studies indicated an interaction between alginate and gelatin due to crosslinking, while FT-IR indicated the absence of chemical interaction with GLZ. The relative bioavailability (T/R) was 97.57, 138.34, and 143.53%, for Cmax, AUC0–72, and AUC0–∞, respectively. Tmax of T was significantly higher than R.

Conclusion

AL-GL beads could represent promising delivery systems for modulating GLZ release rate and minimizing the variation in its absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GLZ:

Gliclazide

AL-GL:

Alginate-gelatin

AL-High:

Alginic acid sodium salt-high viscosity

AL-Med:

Alginic acid sodium salt-medium viscosity

AL-low:

Alginic acid sodium salt-low viscosity

GA:

Glutaraldehyde

SEM:

Scanning electron microscope

DSC:

Differential scanning calorimetry

FT-IR:

Fourier transform infrared

ANOVA:

Analysis of variance

LLOQ:

Lower limit of quantification

HLOQ:

Higher limit of quantification

References

  1. Rajabi-Siahboomi AR. Multiparticulate drug delivery: formulation, processing and manufacturing. Springer; 2017.

  2. Gandhi R, Lal Kaul C, Panchagnula R. Extrusion and spheronization in the development of oral controlled-release dosage forms. Pharm Sci Technol Today. 1999;2(4):160–70. https://doi.org/10.1016/S1461-5347(99)00136-4.

    Article  CAS  Google Scholar 

  3. Vaithiyalingam S, Khan MA. Optimization and characterization of controlled release multi-particulate beads formulated with a customized cellulose acetate butyrate dispersion. Int J Pharm. 2002;234(1–2):179–93. https://doi.org/10.1016/S0378-5173(01)00959-0.

    Article  CAS  PubMed  Google Scholar 

  4. Dey N, Majumdar S, Rao M. Multiparticulate drug delivery systems for controlled release. Trop J Pharm Res. 2008;7(3):1067–75.

    Article  Google Scholar 

  5. Nutan MTH, Soliman MS, Taha EI, Khan MA. Optimization and characterization of controlled release multi-particulate beads coated with starch acetate. Int J Pharm. 2005;294(1–2):89–101. https://doi.org/10.1016/j.ijpharm.2005.01.013.

    Article  CAS  PubMed  Google Scholar 

  6. Yao H, Yao H, Zhu J, Yu J, Zhang L. Preparation and evaluation of a novel gastric floating alginate/poloxamer inner-porous beads using foam solution. Int J Pharm. 2012;422(1):211–9.

    Article  CAS  PubMed  Google Scholar 

  7. Patwekar SL, Baramade MK. Controlled release approach to novel multiparticulate drug delivery system. Int J Pharm Pharm Sci. 2012;4(3):757–63.

    CAS  Google Scholar 

  8. Lebovitz H, Feinglos M. Diabetes Mellitus: Theory and Practices, edited by M. Ellenberg & H. Rifkin. New York: Medical Examination Publishing; 1983.

    Google Scholar 

  9. Parvez M, Arayne MS, Zaman MK, Sultana N. Gliclazide. Acta Crystallogr C. 1999;55(1):74–5.

    Article  PubMed  Google Scholar 

  10. Scott NA, Jennings PE, Brown J, Belch JJ. Gliclazide: a general free radical scavenger. Eur J Pharmacol Mol Pharmacol. 1991;208(2):175–7.

    Article  CAS  Google Scholar 

  11. Campbell D, Lavielle R, Nathan C. The mode of action and clinical pharmacology of gliclazide: a review. Diabetes Res Clin Pract. 1991;14:S21–36.

    Article  PubMed  Google Scholar 

  12. Jennings PE. From hemobiology to vascular disease: a review of the potential of gliclazide to influence the pathogenesis of diabetic vascular disease. J Diabetes Complications. 1994;8(4):226–30.

    Article  CAS  PubMed  Google Scholar 

  13. Palmer KJ, Brogden RN. Gliclazide. An update of its pharmacological properties and therapeutic efficacy in non-insulin-dependent diabetes mellitus. Drugs. 1993;46(1):92–125.

  14. Zoungas SJD. Obesity, Metabolism. ADVANCE in context: The benefits, risks and feasibility of providing intensive glycaemic control based on gliclazide modified release. 2020;22:5–11.

    Google Scholar 

  15. medicine ACGJNEjo. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. 2008;358(24):2560–72.

  16. Priya M, Murthy T. Development of discriminative dissolution media for marketed gliclazide modified-release tablets. Dissolution Technol. 2012;19(2):38–42.

    Article  CAS  Google Scholar 

  17. Amdion G, Lennernas H, Shah V, Crison J. A theoretical basis for a biopharmaceutical drug classification: the correlation of in-vitro drug product dissolution and in-vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  Google Scholar 

  18. Demirturk E, Oner L. Solubility and dissolution properties of gliclazide. FABAD J Pharm Sci. 2004;29(1):21–5.

    CAS  Google Scholar 

  19. Ambrogi V, Perioli L, Ciarnelli V, Nocchetti M, Rossi C. Effect of gliclazide immobilization into layered double hydroxide on drug release. Eur J Pharm Biopharm. 2009;73(2):285–91.

    Article  CAS  PubMed  Google Scholar 

  20. Biswal S, Sahoo J, Murthy P, Giradkar R, Avari J. Enhancement of dissolution rate of gliclazide using solid dispersions with polyethylene glycol 6000. AAPS Pharm Sci Tech. 2008;9(2):563–70.

    Article  CAS  Google Scholar 

  21. Grbic S, Parojcic J, Ibric S, Djuric Z. In vitro–in vivo correlation for gliclazide immediate-release tablets based on mechanistic absorption simulation. AAPS Pharm Sci Tech. 2011;12(1):165–71.

    Article  CAS  Google Scholar 

  22. Schönherr D, Wollatz U, Haznar-Garbacz D, Hanke U, Box K, Taylor R, et al. Characterisation of selected active agents regarding pKa values, solubility concentrations and pH profiles by SiriusT3. Eur J Pharm Biopharm. 2015;92:155–70.

    Article  PubMed  Google Scholar 

  23. Graal MB, Wolffenbuttel BH. The use of sulphonylureas in the elderly. Drugs Aging. 1999;15(6):471–81.

    Article  CAS  PubMed  Google Scholar 

  24. McGavin JK, Perry CM, Goa KL. Gliclazide modified release. Drugs. 2002;62(9):1357–64. https://doi.org/10.2165/00003495-200262090-00010.

    Article  CAS  PubMed  Google Scholar 

  25. Delrat P, Paraire M, Jochemsen R. Complete bioavailability and lack of food effect on pharmacokinetics of gliclazide 30 mg modified release in healthy volunteers. Biopharm Drug Dispos. 2002;23(4):151–7.

    Article  CAS  PubMed  Google Scholar 

  26. Park J-Y, Kim K-A, Kim S-L, Park P-W. Quantification of gliclazide by semi-micro high-performance liquid chromatography: application to a bioequivalence study of two formulations in healthy subjects. J Pharm Biomed Anal. 2004;35(4):943–9.

    Article  CAS  PubMed  Google Scholar 

  27. Najib N, Idkaidek N, Beshtawi M, Bader M, Admour I, Alam SM, et al. Bioequivalence evaluation of two brands of gliclazide 80 mg tablets (Glyzide® & Diamicron®)—in healthy human volunteers. Biopharm Drug Dispos. 2002;23(5):197–202.

    Article  CAS  PubMed  Google Scholar 

  28. Hong S, Lee S, Lee Y, Chung S, Lee M, Shim C. Accelerated oral absorption of gliclazide in human subjects from a soft gelatin capsule containing a PEG 400 suspension of gliclazide. J Control Release. 1998;51(2):185–92.

    Article  CAS  PubMed  Google Scholar 

  29. Nazief AM, Hassaan PS, Khalifa HM, Sokar MS. El-Kamel AHJIJoN. Lipid-based gliclazide nanoparticles for treatment of diabetes: formulation, pharmacokinetics, pharmacodynamics and subacute toxicity study. 2020;15:1129.

    CAS  Google Scholar 

  30. Rojanasthien N, Autsavakitipong T, Kumsorn B, Manorot M, Teekachunhatean S. Bioequivalence study of modified-release gliclazide tablets in healthy volunteers. Int Scholarly Res Net Pharma. 2012;2012:1–6.

    Google Scholar 

  31. Zhang Y, Si D, Chen X, Lin N, Guo Y, Zhou H et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics of gliclazide MR in Chinese subjects. 2007;64(1):67–74.

  32. Sharma VK, Mazumdar B. Characterization of gliclazide release from isabgol husk hydrogel beads by validated HPLC method. Acta Pol Pharm. 2014;71(1):153–66.

    CAS  PubMed  Google Scholar 

  33. Al-Kassas RS, Al-Gohary O, Al-Faadhel MM. Controlling of systemic absorption of gliclazide through incorporation into alginate beads. Int J Pharm. 2007;341(1):230–7.

    Article  CAS  PubMed  Google Scholar 

  34. Awasthi R, Kulkarni GT. Development of novel gastroretentive drug delivery system of gliclazide: hollow beads. Drug Dev Ind Pharm. 2013;40(3):1–11.

    Google Scholar 

  35. Varshosaz J, Tavakoli N, Minayian M, Rahdari N. Applying the Taguchi design for optimized formulation of sustained release gliclazide chitosan beads: an in vitro/in vivo study. AAPS Pharm Sci Tech. 2009;10(1):158–65.

    Article  CAS  Google Scholar 

  36. Aramwit P, Jaichawa N, Ratanavaraporn J, Srichana T. A comparative study of type A and type B gelatin nanoparticles as the controlled release carriers for different model compounds. Materials Express. 2015;5(3):241–8.

    Article  CAS  Google Scholar 

  37. Talebian A, Kordestani S, Rashidi A, Dadashian F, Montazer M. The effect of glutaraldehyde on the properties of gelatin films. Kemija u industriji: Časopis kemičara i kemijskih inženjera Hrvatske. 2007;56(11):537–41.

    CAS  Google Scholar 

  38. Vandelli MA, Rivasi F, Guerra P, Forni F, Arletti R. Gelatin microspheres crosslinked with D, L-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies. Int J Pharm. 2001;215(1–2):175–84.

    Article  CAS  PubMed  Google Scholar 

  39. Emara LH, El-Menshawi BM. Niclosamide biodegradable beads. Influence of some environmental factors on the molluscicidal activity. Int. Symp. Controlled Release Bioact. Mater., 28th: controlled release society; 2001. p. 147–8.

  40. Emara LH, El-Menshawi BM. Niclosmide biodegradable beads. Stability enhanced molluscicidal formulations. Int. Symp. Controlled Release Bioact. Mater., 28th, 2001: Controlled Release Society; 2001. p. 114–5.

  41. Sudhakar P, Bhagyamma S, Siraj S, Sekharnath K, Rao KC, Subha M. Preparation and characterization of microspheres for controlled release of anti HIV drug. J Applied Pharma Sci. 2015;5(2):51–7.

    Article  Google Scholar 

  42. Shah D, Shah Y, Pradhan R. Development and evaluation of controlled-release diltiazem HCl microparticles using cross-linked poly (vinyl alcohol). Drug Dev Ind Pharm. 1997;23(6):567–74.

    Article  CAS  Google Scholar 

  43. Nussinovitch A. Beads as Drug Carriers. Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications. New York, NY: Springer New York; 2010. p. 191–230.

  44. Tahtat D, Mahlous M, Benamer S, Khodja AN, Oussedik-Oumehdi H, Laraba-Djebari F. Oral delivery of insulin from alginate/chitosan crosslinked by glutaraldehyde. Int J Biol Macromol. 2013;58:160–8.

    Article  CAS  PubMed  Google Scholar 

  45. Elsayed EW, El-Ashmawy AA, Mursi NM, Emara LH. Optimization of gliclazide loaded alginate-gelatin beads employing central composite design. Drug Dev Ind Pharm. 2019;45(12):1959–72.

    Article  CAS  PubMed  Google Scholar 

  46. Rakmai J, Cheirsilp B, Prasertsan P. Enhanced thermal stability of cyclodextrin glycosyltransferase in alginate–gelatin mixed gel beads and the application for β-cyclodextrin production. Biocatal Agric Biotechnol. 2015;4(4):717–26.

    Article  Google Scholar 

  47. Prajapati S, Tripathi P, Ubaidulla U, Anand V. Design and development of gliclazide mucoadhesive microcapsules: in vitro and in vivo evaluation. AAPS Pharm Sci Tech. 2008;9(1):224–30.

    Article  CAS  Google Scholar 

  48. Awasthi R, T Kulkarni G. Development of novel gastroretentive floating particulate drug delivery system of gliclazide. Current drug delivery. 2012;9(5):437–51.

  49. Emara LH, El-Menshawi BM. Slow-release of the molluscicide niclosamide from alginate beads. Int. Symp. Controlled Release Bioact. Mater., 22nd: controlled release society; 1995. p. 220–1.

  50. Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB. Reversed chitosan–alginate polyelectrolyte complex for stability improvement of alpha-amylase: optimization and physicochemical characterization. Eur J Pharm Biopharm. 2007;65(2):215–32.

    Article  CAS  PubMed  Google Scholar 

  51. Colinet I, Dulong V, Mocanu G, Picton L, Le Cerf D. New amphiphilic and pH-sensitive hydrogel for controlled release of a model poorly water-soluble drug. Eur J Pharm Biopharm. 2009;73(3):345–50.

    Article  CAS  PubMed  Google Scholar 

  52. Sood A, Panchagnula R. Drug release evaluation of diltiazem CR preparations. Int J Pharm. 1998;175(1):95–107.

    Article  CAS  Google Scholar 

  53. Wright MR. The kinetic analysis of experimental data. An introduction to chemical kinetics. Wiley, J., and Sons Ltd., The Atrium, Southern Gate, Chichester, West Suessex P019 8SQ, England; 2004. p. 43–95.

  54. Karasulu E, Yesim Karasulu H, Ertan G, Kirilmaz L, Guneri T. Extended release lipophilic indomethacin microspheres: formulation factors and mathematical equations fitted drug release rates. Eur J Pharm Sci. 2003;19(2-3):99-104. doi:S0928098703000484[pii].

  55. Hixson A, Crowell J. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;23(8):923–31.

    Article  CAS  Google Scholar 

  56. Ostle B. Statistics In Research. 2nd ed. Ames, Iowa, USA: The Iowa State University Press; 1963.

    Google Scholar 

  57. Parab PV, Oh CK, Ritschel WA. Sustained Release from Precirol® (Glycerol Palmito-Stearate) Matrix. Effect of mannitol and hydroxypropyl methylcellulose on the release of theophylline. Drug Dev Ind Pharm. 1986;12(8):1309 - 27.

  58. Philip AK, Pathak K. Osmotic flow through asymmetric membrane: a means for controlled delivery of drugs with varying solubility. AAPS Pharm Sci Tech. 2006;7(3):E1–11. https://doi.org/10.1208/pt070356.

    Article  Google Scholar 

  59. Ritger PL, Peppas NAJJocr. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. 1987;5(1):37–42.

  60. Bolton S. Appendix IV. In: Swarbrick J, editor. Pharmaceutical statistics: Pract Clin Appl. 3rd, ed.: Marcel Dekker, Inc.; 1997.

  61. Talari R, Varshosaz J, Mostafavi SA, Nokhodchi A. Gliclazide microcrystals prepared by two methods of in situ micronization: pharmacokinetic studies in diabetic and normal rats. AAPS Pharm Sci Tech. 2010;11(2):786–92. https://doi.org/10.1208/s12249-010-9441-9.

    Article  CAS  Google Scholar 

  62. Thumuganti P, Mada M, Meesa M, Kumar R, Kasthuri NRP. Pharmacokinetic interaction of gliclazide with ornidazole in healthy albino Wistar rats. J Young Pharm. 2015;7(3):267–71.

    Article  CAS  Google Scholar 

  63. Glówka F, Hermann T. Use of solid phase extraction in quantitative determination of gliclazide in human serum by HPLC. Chem Anal (Warsaw). 1997;42(2):215–9.

    Google Scholar 

  64. Główka F, Hermann T, Zabel M. Bioavailability of gliclazide from some formulation tablets. Int J Pharm. 1998;172(1):71–7.

    Article  Google Scholar 

  65. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. New York: Marcel Dekker Inc.; 1982.

    Book  Google Scholar 

  66. Martinsen A, Skjåk‐Bræk G, Smidsrød O. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnology and bioengineering. 1989;33(1):79–89.

  67. Kim S, Jeong C, Cho S. Kim S-BJF. Effects of thermal treatment on the physical properties of edible calcium alginate gel beads: response surface methodological approach. 2019;8(11):578.

    CAS  Google Scholar 

  68. Jeong C, Kim S, Lee C, Cho S. Kim S-BJF. Changes in the physical properties of calcium alginate gel beads under a wide range of gelation temperature conditions. 2020;9(2):180.

    CAS  Google Scholar 

  69. Kulkarni AR, Soppimath KS, Aminabhavi TM. Controlled release of diclofenac sodium from sodium alginate beads crosslinked with glutaraldehyde. Pharm Acta Helv. 1999;74(1):29–36.

    Article  CAS  Google Scholar 

  70. Emara LH, Elsayed EW, El-Ashmawy AA, Abdou AR, Morsi NM. The flow-through cell as an in vitro dissolution discriminative tool for evaluation of gliclazide solid dispersions. J Appl Pharm Sci. 2017;7(05):070–7.

    CAS  Google Scholar 

  71. Hodsdon AC, Mitchell JR, Davies MC, Melia CD. Structure and behaviour in hydrophilic matrix sustained release dosage forms: 3. The influence of pH on the sustained-release performance and internal gel structure of sodium alginate matrices. J Control Release. 1995;33(1):143–52.

  72. Prajapati VD, Mashru KH, Solanki HK, Jani GK. Development of modified release gliclazide biological macromolecules using natural biodegradable polymers. Int J Biol Macromol. 2013;55:6–14.

    Article  CAS  PubMed  Google Scholar 

  73. Patel YL, Sher P, Pawar AP. The effect of drug concentration and curing time on processing and properties of calcium alginate beads containing metronidazole by response surface methodology. AAPS Pharm Sci Tech. 2006;7(4):E24–30.

    Article  Google Scholar 

  74. Pankongadisak P, Ruktanonchai UR, Supaphol P, Suwantong O. Preparation and characterization of silver nanoparticles-loaded calcium alginate beads embedded in gelatin scaffolds. AAPS Pharm Sci Tech. 2014;15(5):1105–15. https://doi.org/10.1208/s12249-014-0140-9.

    Article  CAS  Google Scholar 

  75. Kim J-Y, Kim S-h, Rhee Y-S, Park C-W, Park E-S. Preparation of hydroxypropylmethyl cellulose-based porous matrix for gastroretentive delivery of gabapentin using the freeze-drying method. Cellulose. 2013;20(6):3143–54. https://doi.org/10.1007/s10570-013-0048-7.

  76. Yang W, Owens DE, Williams RO. Pharmaceutical Cryogenic Technologies. In: Williams Iii RO, Watts AB, Miller DA, editors. Formulating Poorly Water Soluble Drugs. New York, NY: Springer New York; 2012. p. 443–500.

  77. Leuenberger H. Spray freeze-drying—the process of choice for low water soluble drugs? J Nanopart Res. 2002;4(1):111–9. https://doi.org/10.1023/a:1020135603052.

    Article  CAS  Google Scholar 

  78. Saks SR, Gardner LB. The pharmacoeconomic value of controlled-release dosage forms. J Control Release. 1997;48(2):237–42.

    Article  CAS  Google Scholar 

  79. Karna S, Chaturvedi S, Agrawal V, Alim M. Formulation approaches for sustained release dosage forms: a review. Asian J Pharm Clin Res. 2015;8(5):34–41.

    CAS  Google Scholar 

  80. Soares J, Santos J, Chierice G, Cavalheiro E. Thermal behavior of alginic acid and its sodium salt. Eclética Química. 2004;29(2):57–64.

    Article  CAS  Google Scholar 

  81. Mukherjee I, Rosolen M. Thermal transitions of gelatin evaluated using DSC sample pans of various seal integrities. J Therm Anal Calorim. 2013;114(3):1161–6.

    Article  CAS  Google Scholar 

  82. Rajamma A, Sateesha S, Narode M, Prashanth V, Karthik A. Preparation and crystallographic analysis of gliclazide polymorphs. Indian J Pharm Sci. 2015;77(1):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jondhale S, Bhise S, Pore Y. Physicochemical investigations and stability studies of amorphous gliclazide. AAPS Pharm Sci Tech. 2012;13(2):448–59.

    Article  CAS  Google Scholar 

  84. Biswal S, Sahoo J, Murthy P. Characterisation of gliclazide-PEG 8000 solid dispersions. Trop J Pharm Res. 2009;8(5):417–24.

    Article  CAS  Google Scholar 

  85. Varma MM, Kumar PS. Formulation and evaluation of gliclazide tablets containing PVP-K30 and Hydroxy propyl-β-cyclodextrin solid dispersion. Int J Pharm Scie Nanotechnology. 2012;5(2):1706–19.

    Article  Google Scholar 

  86. Patil MP, Gaikwad NJ. Characterization of gliclazide-polyethylene glycol solid dispersion and its effect on dissolution. Braz J Pharm Sci. 2011;47(1):161–6.

  87. Roy A, Bajpai A, Bajpai J. Designing swellable beads of alginate and gelatin for controlled release of pesticide (cypermethrin). J Macromol Sci Part A Pure Appl Chem. 2009;46(9):847–59.

    Article  CAS  Google Scholar 

  88. Saravanan M, Rao KP. Pectin–gelatin and alginate–gelatin complex coacervation for controlled drug delivery: influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules. Carbohyd Polym. 2010;80(3):808–16.

    Article  CAS  Google Scholar 

  89. Devi N, Hazarika D, Deka C, Kakati D. Study of complex coacervation of gelatin A and sodium alginate for microencapsulation of olive oil. J Macromol Sci Part A. 2012;49(11):936–45.

    Article  CAS  Google Scholar 

  90. Xing Q, Yates K, Vogt C, Qian Z, Frost MC, Zhao F. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep. 2014;4:1–10.

    Google Scholar 

  91. Emara LH, El-Ashmawy AA, Taha NF. Stability and bioavailability of diltiazem/polyethylene oxide matrix tablets. Pharm Dev Technol. 2017:1–10.

  92. Resztak M, Hermann TW, Sawicki W, Danielak DZ. Pharmacokinetics and pharmacodynamics of gliclazide from immediate and modified release formulation tablets in rats. Iran J Pharm Res. 2014;13(1):29–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Baran GR, Kiani MF, Samuel SP. Clever strategies for controlled drug release and targeted drug delivery. Healthcare and Biomedical Technology in the 21st Century: An Introduction for Non-Science Majors. New York, NY: Springer New York; 2014. p. 323–42.

  94. Waterman KC, Goeken GS, Konagurthu S, Likar MD, MacDonald BC, Mahajan N, et al. Osmotic capsules: a universal oral, controlled-release drug delivery dosage form. J Control Release. 2011;152(2):264–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebtesam W. Elsayed.

Ethics declarations

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the Medical Research Ethical Committee of the National Research Centre, Cairo, Egypt (registration number 16-058).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12247_2021_9542_MOESM1_ESM.png

Supplementary file1 ESM_1: HPLC/UV chromatograms of GLZ in rat plasma; lower limit of quantification (LLOQ, 0.1 µg/ml) and higher limit of quantification (HLOQ, 10 µg/ml). (PNG 102 KB)

12247_2021_9542_MOESM2_ESM.jpg

Supplementary file2 ESM_2: Photographs of dried AL-beads; Viscosity grades: High (A), Medium (B) and Low (C). (JPG 385 KB)

Supplementary file3 ESM_3: Photographs of AL-GL beads; Key: A = Air-dried beads, B = Freeze-dried beads. (JPG 510 KB)

12247_2021_9542_MOESM4_ESM.jpg

Supplementary file4 ESM_4: DSC thermograms of pure GLZ, AL, GL, different blank AL-GL beads and GLZ loaded AL-GL beads. (JPG 1592 KB)

12247_2021_9542_MOESM5_ESM.jpg

Supplementary file5 ESM_5: FT-IR spectra of pure GLZ, AL, GL, different blank AL-GL beads and GLZ loaded AL-GL beads. (JPG 2594 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsayed, E.W., El-Ashmawy, A.A., Mahmoud, K.M. et al. Modulating Gliclazide Release and Bioavailability Utilizing Multiparticulate Drug Delivery Systems. J Pharm Innov 17, 674–689 (2022). https://doi.org/10.1007/s12247-021-09542-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-021-09542-9

Keywords

Navigation