Skip to main content
Log in

Uncooled Antenna-Coupled Microbolometer for Detection of Terahertz Radiation

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this contribution, we describe the design, technology, and physical parameters of antenna-coupled microbolometer, used for broadband detection of terahertz electromagnetic spectrum. This microbolometer features an application of La0.67Sr0.33MnO3 layer grown on multilayered material stack ensuring lattice matching of the sensing LSMO layer to silicon. By virtue of bulk micromachining of silicon-on-insulator substrates, the sensing structure is built on thin suspended membrane to provide weak thermal link, increasing thermal response, thus sensitivity. Additionally, it helps suppressing excitation of in-plane guided surface modes that will otherwise deteriorate the antenna radiation diagram and affect the spectral responsivity of the sensor. Finally, the operation of sensor is demonstrated using a molecular laser setup at 762 GHz (and also 1.4 THz) emission line. The parameters of the said microbolometers are analyzed in terms of response and time constant. Optimal working temperature of the detectors is about 65 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.-T. Nguyen et al., “Broadband THz Uncooled Antenna-Coupled Microbolometer Array-Electromagnetic Design, Simulations and Measurements”, IEEE Trans. Terahertz Sci. Technol. 2 (2012), 299–305.

    Article  Google Scholar 

  2. A. Banerjee, H. Satoh, D. Elamaran, Y. Sharma, N. Hiromoto, and H. Inokawa, “Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor”, J. Appl. Phys. 125 (2019), 214502 https://doi.org/10.1063/1.5083643

    Article  Google Scholar 

  3. A. Sešek, et al., Antenna-coupled Ti-microbolometers for High-sensitivity Terahertz Imaging, Sens. Actuators A: Phys. 268 (2017),133-140, https://doi.org/10.1016/j.sna.2017.11.029

    Article  Google Scholar 

  4. N. Hiromoto, A. Tiwari, M. Aoki, H. Satoh, M. Takeda, and H. Inokawa, Room-Temperature THz Antenna-Coupled Microbolometer with a Joule-Heating Resistor at the Center of a Half-Wave Antenna, 39th Int. Conf. Infrared, Millimeter, and THz Waves (IRMMW-THz), 2014, R3/A-27.6.

  5. F. Simoens, J. Meilhan, B. Delplanque, S. Gidon, G. Lasfargues, J. Lalanne Dera, D.T. Nguyen , J.L. Ouvrier-Buffet , S. Pocas, T. Maillou, O. Cathabard, S. Barbieri, Real-time imaging with THz fully-customized uncooled amorphous-silicon microbolometer focal plane arrays Proc. SPIE 8363, Terahertz Physics, Devices, and Systems VI: Advanced Applications in Industry and Defense, 83630D (2012); https://doi.org/10.1117/12.919185

  6. S. Liu et al., “La0.7Sr0.3MnO3 suspended microbridges for uncooled bolometers made using reactive ion etching of the silicon substrates”, Microelectron. Eng. 111 (2013), 101–104

    Article  Google Scholar 

  7. J.-H. Kim, A. M. Grishin, “Free-standing epitaxial La1-x(Sr,Ca)xMnO3 membrane on Si for uncooled infrared microbolometer”, Appl. Phys.Lett. 87 (2005), 33502

    Article  Google Scholar 

  8. M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, Ch. Alain, H. Jerominek, and A. Bergeron, "Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera", Proc. SPIE 8023, Terahertz Physics, Devices, and Systems V: Advance Applications in Industry and Defense, 80230C (2011); https://doi.org/10.1117/12.883507

  9. N. Oda, S. Kurashina, M. Miyoshi, et al., “Microbolometer Terahertz Focal Plane Array and Camera with Improved Sensitivity in the Sub-Terahertz Region.”, J Infrared Milli Terahertz Waves 36, (2015) 947–960 doi:https://doi.org/10.1007/s10762-015-0184-2

    Article  Google Scholar 

  10. B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera.”, Opt. lett., 33 (5) (2008), 440-442

    Article  Google Scholar 

  11. E. N. Grossman, J. G. Cheron, "Terahertz Detection and Imaging Systems and Applications," 2016 IEEE Comp. Semicond. Integr. (CSICS), Austin, TX, 2016, pp. 1-4. doi: https://doi.org/10.1109/CSICS.2016.7751068

  12. N. A. Tomlin, M. White, I. Vayshenker, S. I. Woods, J. H. Lehman, “Planar electrical-substitution carbon nanotube cryogenic radiometer,” Metrologia, 52 (2015), 376-383

    Article  Google Scholar 

  13. R.H. DuHamel, D.E. Isbell, ”Broadband Logarithmically Periodic Antenna Structures”, IRE International Convention Record, 5 (1957), 119-128

    Article  Google Scholar 

  14. R. H. DuHamel, F. R. Ore, ”Logarithmically Periodic Antenna Designs”, IRE International Convention Record, 6 (1958), 139-151

    Article  Google Scholar 

  15. R. L. Carrell, “The Design of Log-Periodic Dipole Antennas”, 1961 IRE International Convention Record, Part 1.

  16. J. Lehman, A. Steiger, N. Tomlin, M. White, M. Kehrt, I. Ryger, M. Stephens, Ch. Monte, I. Mueller, J. Hollandt, M. Dowell, "Planar hyperblack absolute radiometer," Opt. Express 24, (2016) 25911-25921

    Article  Google Scholar 

  17. Y. Kadoya, M. Onuma, SH. Yanagi, T. Ohkubo, N. Sato, J. Kitagawa, “THz wave propagation on strip lines: Devices, Properties and Applications”, Radioengineering, 17 (2008), 48-54

    Google Scholar 

  18. Y.S. Jin, G. J. Kim, S. G. Jeon, “Terahertz Dielectric Properties of Polymers”, J. Korean. Phys. Soc., 49 (2006), 513-517

    Google Scholar 

  19. Haščík, Š., Lalinský, T., Krnáč, M., Mozolová, Ž., Matay, L., Hrkút, P., Hotový, I., “Polyimide-fixed GaAs island structure prepared using plasma etching technique,” Czechoslov. J. Phys. 54 (2004) Suppl. C1001-1005.

    Article  Google Scholar 

  20. Š.Chromik, V. Štrbik, E.Dobročka, T. Roch, A.Rosová, M. Španková, T. Lalinský, G.Vanko, P. Lobotka, M. Ralbovský, and P. Choleva, “LSMO thin films with high metal-insulator transition temperature on buffered SOI substrates for uncooled microbolometers”, Appl. Surf. Sci. 312 (2014), 30

    Article  Google Scholar 

  21. Š. Chromik, V. Štrbík, E. Dobročka, A. Dujavová, M. Reiffers, J. Liday, and M. Španková, “Significant increasing of onset temperature of FM transition in LSMO thin films” , Appl. Surf. Sci. 269 (2013), 98

    Article  Google Scholar 

  22. Ryger, D. Harber, M. Stephens, M. White, N. Tomlin, M. Spidell, J. Lehman, Noise characteristics of thermistors: Measurement methods and results of selected devices”, Rev. Sci. Ins. 88 (2017), 024707

    Article  Google Scholar 

  23. L. Méchin, P. Perna, C. Barone, J.-M. Routoure, Ch. Simon, Structural, magnetic and electrical properties of La0.7Sr0.3MnO3 thin films deposited on buffered - Si(001) substrates, proc. WOE13, Ischia Island, Italy 8–11 2006

  24. Z. Trajanovic et al., “Growth of colossal magnetoresistance thin films on silicon”, Appl. Phys. Lett. 69 (1996), 1005

    Article  Google Scholar 

  25. J.-H. Kim et al., “Epitaxial colossal magnetoresistive La0.67(Sr,Ca)0.33MnO3 films on Si” , Appl. Phys. Lett. 82 (2003), 4295

    Article  Google Scholar 

  26. M Sojková et al., “Fabrication of hybrid thin film structures from HTS and CMR materials”, J. Phys.: Conf. Ser. 700 (2016) 012022

    Google Scholar 

  27. G. K. Reeves, “Specific contact resistance using a circular transmission line model”, Solid State Electron., 23. (1980), 487-490

    Article  Google Scholar 

  28. T. Lalinský, G. Vanko, J. Dzuba, V. Kutiš, G. Gálik, J. Paulech, Š. Chromík, P. Lobotka, “Thermo-mechanical analysis of uncooled La0.67Sr0.33MnO3 microbolometer made on circular SOI membrane”, Procedia Engineer. 168 (2016), 733 – 736

    Article  Google Scholar 

  29. T. Kouh, U. Kemikratak, O. Bassarir, C. Lissandrello, K. L. Ekinci, “Measuring Gaussian noise using a lock-in amplifier”, Am. J. Phys. 82 (2014), 778-784 https://doi.org/10.1119/1.4873694

    Article  Google Scholar 

  30. L. Méchin, J.- M. Routoure, S. Mercone, F. Yang, S. Flament, R. A. Chakalov, “1/f noise in patterned La2/3Sr1/3MnO3 thin films in 300-400K range”, J. Appl. Phys. 103 (2008), 083709

  31. C. D. Motchenbacher and J. A. Connely, “Low Noise Electronic Design”, (Wiley, 1993).

  32. S. Wu, B. Guillet, L. Méchin, J.-M. Routoure, “A systematic study of the impact of geometry on the low frequency noise in patterned La0.7Sr0.3MnO3 thin films at 300 K”, Proc. 20th Intl. Conf. on Noise and Fluctuations, 2009, Pisa, Italy. 125-128

  33. L. Méchin, “Microdispositifs en couches minces d’oxydessupraconducteurs (YBa2Cu3O7) et manganites (La0,7Sr0,3MnO3)”, Micro et nanotechnologies/Microélectronique. Université de Caen, 2005

  34. F. Yang, L. Méchin, J. M. Routoure, B Guillet, RA Chakalov, ”Low-noise La0,7Sr0,3MnO3 thermometers for uncooled bolometric applications”, J. Appl. Phys. 99 (2006), 024903

    Article  Google Scholar 

  35. L. Méchin, J. M. Routoure, S. Mercone, F. Yang, S. Flament, R. A. Chakalov, “1/f noise in patterned La2/3Sr1/3MnO3 thin films in the 300-400K range”, J. Appl. Phys. 103 (2008), 083709

    Article  Google Scholar 

  36. C Barone, S Pagano, L Méchin, JM Routoure, P Orgiani, L Maritato, “Apparent volume dependence of 1/f noise in thin film structures: Role of contacts” , Rev. Sci. Ins. 79 (2008), 053908

    Article  Google Scholar 

  37. F. Yang, “Bruit en 1/f de films minces de manganite La La0,7Sr0,3MnO3 pour application en bolométrie”, Micro et nanotechnologies/Microélectronique. Université de Caen, 2005. Français.

  38. B. Guillet, S. Flament, S. Liu, O. Rousseau, A. Aryan, et al.. “Low-frequency noise considerations for sensors based on manganites”.Proc. 25th Intl. Conf. on Noise and Fluctuations, 2019, Neuchatel, Switzerland. pp.326-329, ff10.5075/epfl-ICLAB-ICNF269309ff.

  39. B. Guillet, S. Liu, A. Aryan, C. Adamo, D. G. Schlom, et al. “Uncooled phonon noise limited La0.7Sr0.3MnO3 suspended bolometers.”, proc. 41st Intl. Conf. on Infrared, Millimeter, and Terahertz waves, 2016, Copenhagen, Denmark. ff10.1109/IRMMW-THz.2016.7758405ff.

  40. A. Steiger, M. Kehrt, Ch. Monte, R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz”, Opt. Express, 21 (2013), 14466-14473 https://doi.org/10.1364/OE.21.014466

    Article  Google Scholar 

  41. M.T. Spidell, D. R. Conklin,. C. S. Yung, E. Theocharous, J. H. Lehman, “Spectral, spatial and survivability evaluation of a flash-dried plasma-etched nanotube spray coating”, Appl. Opt. 58 (2019), 257-263

    Article  Google Scholar 

  42. J. H. Lehman, E. Theocharous, and S. Theocharous, “Assembly and evaluation of a pyroelectric detector bonded to vertically aligned multiwalled carbon nanotubes over thin silicon,” Appl. Opt. 52 (2013), 8054–8059

    Article  Google Scholar 

  43. G. Galik, V. Kutis, J. Paulech, “thermal transient analysis of bolometer”, AIP Conf. Proc. 1996, 020011-1–020011-5; https://doi.org/10.1063/1.5048863

  44. E. Theocharous, J. Lehman, “The evaluation of a pyroelectric detector with a sprayed carbon multi-wall nanotube black coating in the infrared”, Infrared Phys. Techn. 54 (2011), 34-38

    Article  Google Scholar 

  45. J. H. Lehman, Ch. Engtrakul, T. Gennett, A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector”, Appl. Opt., 44 (2005), 483-488

    Article  Google Scholar 

Download references

Funding

This work was mostly driven by the European metrological project JRP-n15 “Microwave and terahertz metrology for homeland security,” and by national projects APVV 14-0613, APVV 0450-10, and APVV 0455-12 financed by the Slovak grant Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Ryger.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Although the antenna-coupled microbolometer was designed to operate in the frequency interval of 100 GHz–1 THz, we carried out a measurement beyond the resonance of the smallest antenna tooth, namely at 1.4-THz molecular laser emission line. As shown on the picture, attached, the microbolometer biased by DC current I = 0.1 mA was able to detect and map the beam power density even at this high frequency. The small aspect ratio between measured semi-axes of the elliptical beam indicates that beyond the antenna resonance, its contribution to the overall signal was relatively small and the terahertz beam was directly absorbed in high-dielectric-constant LSMO disk bolometer (Fig. 14).

Fig. 14
figure 14

1.4-THz-line beam planar scan of the microbolometer, showing direct partial beam absorption by the microbolometer disk. The DC bias current was IDC = 0.1 mA, respectively; DC voltage drop on the microbolometer was 71.7 mV. The beam intensity was 1.615 mW. Graph is in relative units; 100% signal intensity corresponds to 41 μV first harmonic component of the demodulated signal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryger, I., Lobotka, P., Steiger, A. et al. Uncooled Antenna-Coupled Microbolometer for Detection of Terahertz Radiation. J Infrared Milli Terahz Waves 42, 462–478 (2021). https://doi.org/10.1007/s10762-021-00781-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00781-y

Keywords

Navigation