Skip to main content
Log in

Improved Stability and Damping Characteristics of LCL-Filter Based Distributed Generation System

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

The voltage source inverter is a key component in the distributed power generation systems where the LCL-filter is a popular choice for interfacing with the grid. However, the well-known resonance issue associated with the LCL-filter deteriorates the control performance and risk the inverter system stability. The inverter control design plays a significant role to ensure the quality of the injected grid current and stable operation according to the requirements of grid interconnection standards. This paper deals with an alternative control design method that modifies the internal damping loop design to improve the stability and damping characteristics. The proposed design employs a compensator across the filter and feedbacks the output of the augmented plant at the reference voltage point, and named as parallel feedforward compensation method. The filter capacitor current measured for damping loop implementation, and a high-pass filter compensator adopted in the proposed configuration. The proportional capacitor current feedback compensation method is considered for comparative studies. The current loop stability and control performance characteristics are investigated in detail under the resonance frequency and filter parameters variation condition. The significant outcomes of the proposed scheme are faster dynamic response, higher delay compensation capability, relatively improved resonance suppression, and potential for better tracking performance. An experimental prototype is developed to validate the efficacy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Blaabjerg F, Teodorescu R, Liserre M, Timbus AV (2006) Overview of control and grid synchronization for distributed power generation systems. IEEE Trans Ind Electron 53(5):1398–1409

    Article  Google Scholar 

  2. Ruan X, Wang X, Pan D, Yang D, Li W, Bao C (2017) Control techniques for LCL -type grid- connected inverters. Springer, ingapore

    MATH  Google Scholar 

  3. IEEE Std 1547.6TM, IEEE Recommended Practice for Interconnecting Distributed Resources with Electric Power Systems Distribution Secondary Networks, no. September. In: IEEE Standards Association 2011.

  4. Zeb K et al (2018) A comprehensive review on inverter topologies and control strategies for grid connected photovoltaic system. Renew Sust Energy Rev 94(July):1120–1141

    Article  Google Scholar 

  5. Wu W, Liu Y, He Y, Chung HSH, Liserre M, Blaabjerg F (2017) Damping methods for resonances caused by LCL-filter-based current-controlled Grid-tied power inverters: an overview. IEEE Trans Ind Electron 64(9):7402–7413

    Article  Google Scholar 

  6. Dannehl J, Liserre M, Fuchs FW (2011) Filter-based active damping of voltage source converters with LCL filter. IEEE Trans Ind Electron 58(8):3623–3633

    Article  Google Scholar 

  7. Tang Y, Loh PC, Wang P, Choo FH, Gao F (2012) Exploring inherent damping characteristic of LCL-filters for three-phase grid-connected voltage source inverters. IEEE Trans Power Electron 27(3):1433–1443

    Article  Google Scholar 

  8. Pena-Alzola R, Liserre M, Blaabjerg F, Ordonez M, Kerekes T (2014) A self-commissioning notch filter for active damping in a three-phase LCL-filter-based grid-tie converter. IEEE Trans Power Electron 29(12):6754–6761

    Article  Google Scholar 

  9. Faiz MT et al (2020) Capacitor voltage damping based on parallel feedforward compensation method for LCL filter grid-connected inverter. IEEE Trans Ind Appl 56(1):837–849

    Article  Google Scholar 

  10. Pan D, Ruan X, Wang X (2018) Direct realization of digital differentiators in discrete domain for active damping of LCL-type grid-connected inverter. IEEE Trans Power Electron 33(10):8461–8473

    Article  Google Scholar 

  11. Liu J, Zhou L, Molinas M (2018) Damping region extension for digitally controlled LCL-type grid-connected inverter with capacitor-current feedback. IET Power Electron 11(12):1974–1982

    Article  Google Scholar 

  12. Chen C, Xiong J, Wan Z, Lei J, Zhang K (2017A) Time Delay Compensation Method Based on Area Equivalence For Active Damping of an LCL -Type Converter. IEEE Trans. POWER Electron 32(1):762–772

    Article  Google Scholar 

  13. Bai H, Wang X, Loh PC, Blaabjerg F (2017) Passivity enhancement of grid-tied converters by series LC-filtered active damper. IEEE Trans Ind Electron 64(1):369–379

    Article  Google Scholar 

  14. Harnefors L, Finger R, Wang X, Bai H, Blaabjerg F (2017) VSC Input-Admittance Modeling and Analysis Above the Nyquist Frequency for Passivity-Based Stability Assessment. IEEE Trans Ind Electron 0046:1–1

    Google Scholar 

  15. Zhu K, Sun P, Wang L, Zhou L, Du X (2019) Control delay compensation scheme based on non-instantaneous loading and pulse-width equivalence for active damping of LCL-type inverters. IET Power Electron 12(9):2389–2399

    Article  Google Scholar 

  16. He Y, Wang X, Ruan X, Pan D, Xu X, Liu F (2019) Capacitor-current proportional-integral positive feedback active damping for lcl -type. IEEE Trans Power Electron 34(12):12423–12436

    Article  Google Scholar 

  17. Twining E, Holmes DG (2003) Grid current regulation of a three-phase voltage source inverter with an LCL input filter. IEEE Trans Power Electron 18(3):888–895

    Article  Google Scholar 

  18. Li X, Fang J, Tang Y, Wu X, Geng Y (2018) Capacitor-voltage Feedforward with full delay compensation to improve weak grids adaptability of LCL-filtered grid-connected converters for distributed generation systems. IEEE Trans Power Electron 33(1):749–764

    Article  Google Scholar 

  19. Zhu D, Zou X, Zhao Y, Peng T, Zhou S, Kang Y (2019) Systematic controller design for digitally controlled LCL-type grid-connected inverter with grid-current-feedback active damping. Int. J. Electr. Power Energy Syst. 110:642–652

    Article  Google Scholar 

  20. Wang X, Blaabjerg F, Loh PC (2016) Grid-current-feedback active damping for LCL resonance in grid-connected voltage-source converters. IEEE Trans Power Electron 31(1):213–223

    Article  Google Scholar 

  21. Shuitao Y, Qin L, Peng FZ, Zhaoming Q (2011) A robust control scheme for grid-connected voltage-source inverters. IEEE Trans Ind Electron 58(1):202–212

    Article  Google Scholar 

  22. H. Tang, R. Zhao, S. Tang, and Z. Zeng 2012 Linear quadratic optimal control of a single-phase grid-connected inverter with an LCL filter. In: IEEE Int Symp Ind Electron, pp. 372–376.

  23. Zhong QC, Hornik T (2013) Cascaded current-voltage control to improve the power quality for a grid-connected inverter with a local load. IEEE Trans Ind Electron 60(4):1344–1355

    Article  Google Scholar 

  24. Pan D, Ruan X, Bao C, Li W, Wang X (2014) Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter. IEEE Trans Power Electron 29(7):3414–3427

    Article  Google Scholar 

  25. Liu J et al (2019) Damping region extension for digitally controlled LCL-type grid-connected inverter with capacitor-current feedback. IET Power Electron 11(12):1974–1982

    Article  Google Scholar 

  26. Wang X, Blaabjerg F, Loh PC (2015) Virtual RC damping of LCL -filtered voltage source harmonic compensation. IEEE Trans Power Electron 30(9):4726–4737

    Article  Google Scholar 

  27. Geng Y, Qi Y, Zheng P, Guo F, Gao X (2018) A virtual RLC active damping Method for LCL-type grid-connected inverters. JPE J Power Electron 18(5):1555–1566

    Google Scholar 

  28. Li X, Wu X, Geng Y, Yuan X, Xia C, Zhang X (2015) Wide damping region for LCL-Type grid-connected inverter with an improved capacitor-current-feedback method. IEEE Trans Power Electron 30(9):5247–5259

    Article  Google Scholar 

  29. Yang D, Ruan X, Wu H (2015) A real-time computation method with dual sampling mode to improve the current control performance of the LCL-type. IEEE Trans Ind Electron 62(7):4563–4572

    Article  Google Scholar 

  30. Miskovic V, Member S, Blasko V, Jahns TM, Smith AHC, Romenesko C (2014) Observer-based active damping of LCL resonance in grid-connected voltage source converters. IEEE Trans Ind Appl 50(6):3977–3985

    Article  Google Scholar 

  31. Saleem M, Choi KY, Kim RY (2019) Resonance damping for an LCL filter type grid-connected inverter with active disturbance rejection control under grid impedance uncertainty. Int J Electr Power Energy Syst 109:444–454

    Article  Google Scholar 

  32. Santiago GRC (2016) Hysteretic control of grid-side current for a single-phase LCL grid-connected voltage source converter. Math Comput Simul 130:194–211

    Article  MathSciNet  Google Scholar 

  33. M. T. Faiz, M. M. Khan, X. Jianming, M. Ali, and H. Tang, “Parametric Robustness Analysis for Parallel Feedforward Compensation Based Active Damping of LCL Grid Connected Inverter. In: The 2018 International Power Electronics Conference, 2018, Vol. 2018-May, pp. 528–533.

  34. M. T. Faiz, M. M. Khan, X. Jianming, S. Habib, and H. Tang, “Parallel feedforward compensation based active damping of LCL-type grid connected inverter. In: Proceedings of the IEEE International Conference on Industrial Technology, 2018, Vol. 2018-Febru, pp. 788–793.

  35. M. T. Faiz, M. M. Khan, X. Jianming, M. Ali, M. A. Mumtaz, and H. Tang, “Active Damping of Capacitor Current based on Parallel Feedforward Compensation of LCL Grid Connected Inverter. In: 5th International Conference on Electrical Engineering (ICEE), 2018, vol. 2018-Febru, pp. 788–793.

  36. Buso S, Mattavelli P (2006) Digital Control in Power Electronics. Morgan & Claypool, San Rafael, CA, USA

    Book  Google Scholar 

  37. Bar-Kana I (1986) On parallel feedforward and simplified adaptive control. Int J Adapt Syst Control Signal Process 1(2):99–104

    Google Scholar 

  38. Iwai Z, Mizumoto I (1994) Realization of simple adaptive control by using parallel feedforward compensator. Int. J. Control 59:1543–1565

    Article  MathSciNet  Google Scholar 

  39. Teodorescu R, Blaabjerg F, Liserre M, Loh PC (2006) Proportional-resonant controllers and filters for grid-connected voltage-source converters. IEE Proc-Electric Power Appl 150(2):750–762

    Article  Google Scholar 

  40. I. Rusnak and I. Barkana In: SPR and ASPR untangled, vol. 6, no. PART 1. IFAC, 2009.

  41. Parker SG, McGrath BP, Holmes DG (2014) Regions of active damping control for LCL filters. IEEE Trans Ind Appl 50(1):424–432

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mansoor Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faiz, M.T., Khan, D., Khan, M.M. et al. Improved Stability and Damping Characteristics of LCL-Filter Based Distributed Generation System. J. Electr. Eng. Technol. 16, 1619–1635 (2021). https://doi.org/10.1007/s42835-021-00676-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-021-00676-x

Keywords

Navigation