Skip to main content
Log in

Nanosilver Particles Coated with Sida acuta Burm. f. Transformed ‘Hairy Root’ Extract for Efficient Biocatalytic Degradation of Organic Dyes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We report here the utility of Sida acuta Burm. f. root extract-mediated silver nanoparticles in catalytic degradation of organic dyes such as methyl orange (MO), methylene blue (MB), bromophenol blue (BPB), and congo red (CR) in the presence of NaBH4. Monodispersed nanosilver particles were characterized using UV–Visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering particle size-zeta potential analysis (DLS-Zeta) and fourier transform infrared spectroscopy (FTIR). TEM images demonstrated spherical uniform nanocrystals (10–50 nm). Catalytic removal of dyes by time-stable AgNPs was studied in a time-dependent manner. Reactions displayed pseudo-first-order rate and rate constants were figured out for removal of different dyes by the nanocatalyst. The dye removal ability of genetically transformed ‘hairy root’ nanoparticles (HR-AgNPs) was more pronounced in comparison with that by nanoparticles prepared from natural root extract (NR-AgNPs). Efficiency of degrading MO, MB, BPB and CR, to the extent as high as 85.99%, 79.10%, 82.65% and 70.12%, respectively were achieved in 30 min by employing HR-AgNPs; the rate constants being 0.0812, 0.0616, 0.0646, and 0.0498 min−1, respectively. This adsorptive removal ability of such biogenic nanoparticles could be explored in wastewater treatment for removal of toxic pollutant dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

HR-AgNPs:

Hairy root-derived silver nanoparticles

NR-AgNPs:

Natural root derived-silver nanoparticles

HRE:

Hairy root extract

NRE:

Natural root extract

MO:

Methyl orange

MB:

Methylene blue

BPB:

Bromophenol blue

CR:

Congo red

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

References

  1. M. Banat, P. Nigam, D. Singh, and R. Marchant (1996). Bioresour. Technol. 58, 217.

    Article  CAS  Google Scholar 

  2. C. Morrison, J. Bandara, and J. Kiwi (1996). J. Adv. Oxid. Technol. 1, 160.

    CAS  Google Scholar 

  3. G. Mance. (Springer, Berlin, 2012).

  4. M. Hernández-Zamora, F. Martínez-Jerónimo, and C. Urbina (2016). Ecotoxicol. Lond. Engl. 25, 1832.

    Article  CAS  Google Scholar 

  5. F. H. Frimmel, G. A. Braun, K. G. Heumann, B. Hock, H. Lüdemann, and M. Spiteller. S.l.: Wiley, (2008). ISBN: 978-3-527-61444-8.

  6. B. Lellis, C. Z. F. Polonio, J. A. Pamphile, and J. C. Polonio (2019). Biotechnol. Res. Innov. 3, 275.

    Article  Google Scholar 

  7. S. S. R. Albeladi, M. A. Malik, and S. A. Al-thabaiti (2020). J. Mater. Res. Technol. 9, 10031.

    Article  CAS  Google Scholar 

  8. B. Manu and S. Chaudhari (2002). Bioresour. Technol. 82, 225.

    Article  CAS  PubMed  Google Scholar 

  9. R. Haghighi and S. M. Ghoreishi (2003). Chem. Eng. Trans. 95, 163.

    Article  CAS  Google Scholar 

  10. M. Shah, D. Fawcett, S. Sharma, S. K. Tripathy, and G. E. J. Poinern (2015). Materials 8, 7278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. C. Krishnaraj, E. G. Jagan, S. Rajasekar, P. Selvakumar, P. T. Kalaichelvan, and N. Mohan (2010). Colloid Surf. B 76, 50.

    Article  CAS  Google Scholar 

  12. M. Alavi and M. Rai (2019). Appl. Microbiol. Biotechnol. 103, 8669.

    Article  CAS  PubMed  Google Scholar 

  13. M. Swaminathan and N. K. Sharma (2019). Handb. Ecomater. 7, 549.

    Article  Google Scholar 

  14. Z. Zaheer (2018). J. Photochem. Photobiol. B 178, 584.

    Article  CAS  PubMed  Google Scholar 

  15. J. Singha, A. Mehta, M. Rawat, and S. Basu (2018). J. Environ. Chem. Eng. 6, 1468.

    Article  CAS  Google Scholar 

  16. S. D. Karou, W. M. C. Nadembega, D. P. Ilboudo, D. Ouermi, M. Gbeassor, C. De Souza, and J. Simpore (2007). Afr. J. Biotechnol. 6, 2953.

    Article  CAS  Google Scholar 

  17. A. Prakash, R. K. Varma, and S. Ghosal (1981). J. Med. Plant Res. 43, 384.

    Article  CAS  Google Scholar 

  18. H. O. Edeoga, D. E. Okwu, and B. O. Mbaebie (2005). Afr. J. Biotechnol. 4, 685.

    Article  CAS  Google Scholar 

  19. S. Jena (2016). Ph. D. Thesis, Utkal University, Bhubaneswar, India.

  20. S. S. Swain, K. K. Rout, and P. K. Chand (2012). Appl. Biochem. Biotechnol. 168, 487.

    Article  CAS  PubMed  Google Scholar 

  21. P. Nayak, M. Sharma, S. N. Behera, M. Thirunavoukkarasu, and P. K. Chand (2015). Appl. Biochem. Biotechnol. 175, 1745.

    Article  CAS  PubMed  Google Scholar 

  22. P. R. Behera, R. C. Jena, A. Das, M. Thirunavoukkarasu, and P. K. Chand (2016). Plant Growth Regul. 80, 103.

    Article  CAS  Google Scholar 

  23. A. M. Abdellah, M. A. Sliem, M. Bakr, and R. M. Amin (2018). Future Med. Chem. 10, 2577.

    Article  CAS  PubMed  Google Scholar 

  24. J. Y. Lee, L. E. Aguilar, C. H. Park, and C. S. Kim (2019). Polymers 11, 1200.

    Article  CAS  PubMed Central  Google Scholar 

  25. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed (2007). Plasmonics 2, 107.

    Article  CAS  Google Scholar 

  26. S. Josepha and B. Mathew (2015). Mater. Sci. Eng. B 195, 90.

    Article  CAS  Google Scholar 

  27. S. Jena, L. Sahu, D. K. Ray, S. K. Mishra, and P. K. Chand (2015). J. Radioanal. Nucl. Chem. 303, 2101.

    CAS  Google Scholar 

  28. A. Singhal, N. Singhal, A. Bhattacharya, and A. Gupta (2017). Inorg. Nano-Met. Chem. 2470.

  29. S. Borthakur, P. Basyach, L. Kalita, K. Sonowal, A. Tiwari, P. Chetiaab, and L. Saikia (2020). New J. Chem. 44, 2947.

    Article  CAS  Google Scholar 

  30. H. Veisi, S. B. Moradi, A. Saljooqi, and P. Safarimehr (2019). Mater. Sci. Eng. C 100, 445.

    Article  CAS  Google Scholar 

  31. S. F. Y. Li and P. P. Gan (2012). Rev. Environ. Sci. Biotechnol. 11, 169.

    Article  CAS  Google Scholar 

  32. L. V. Bharath and S. Rajeshkumar (2017). Chem. Biol. Interact. 273, 219.

    Article  PubMed  CAS  Google Scholar 

  33. N. Matinise, K. Kaviyarasu, N. Mongwaketsi, S. Khamlich, L. Kotsedi, N. Mayedwa, and M. Maaza (2018). Appl. Surf. Sci. 446, 66.

    Article  CAS  Google Scholar 

  34. B. Kumar, K. S. Vizuete, V. Sharma, A. Debut, and L. Cumbal (2019). Vacuum 160, 272.

    Article  CAS  Google Scholar 

  35. D. W. Kim, S. I. Shin, S. G. Oh, K. L. Mittal, and D. O. Shah (2003). Surf. Sci. Ser. 109, 255.

    CAS  Google Scholar 

  36. S. K. Mamidyala and C. G. Kumar (2011). Colloids Surf. B 84, 462.

    Article  CAS  Google Scholar 

  37. R. Sankar, A. Karthik, A. Prabu, S. Karthik, K. S. Shivashangari, and V. Ravikumar (2013). Colloids Surf. B 108, 80.

    Article  CAS  Google Scholar 

  38. T. Mudalige, H. Qu, D. V. Haute, S. M. Ansar, A. Paredes, and T. Ingle (2019). Nanomater. Food Appl. 6, 313.

    Article  Google Scholar 

  39. D. Nayak, S. Pradhan, S. Ashe, P. R. Rauta, and B. Nayak (2015). J. Colloid Interface Sci. 457, 329.

    Article  CAS  PubMed  Google Scholar 

  40. B. Adebayo-Tayo, A. Salaam, and A. Ajibade (2019). Heliyon 5, e02502.

    Article  PubMed  PubMed Central  Google Scholar 

  41. M. Golmohammadi, M. Honarmand, and S. Ghanbari (2019). Spectrochim. Acta A 1386.

  42. J. J. Vijaya, N. Jayaprakash, K. Kombaiah, K. Kaviyarasu, L. J. Kennedy, R. J. Ramalingam, H. A. Al-Lohedan, M. Ali, V. Mohammed, and M. Maaza (2017). J. Photochem. Photobiol. 177, 62.

    Article  CAS  Google Scholar 

  43. N. K. R. Bo Gireddy, H. A. K. Kumar, and B. K. Mandal (2016). J. Environ. Chem. Eng. 4, 56.

    Article  CAS  Google Scholar 

  44. T. Rasheeda, F. Nabeela, M. Bilal, and H. M. N. Iqbal (2019). Biocatal. Agric. Biotechnol. 19, 101154.

    Article  Google Scholar 

  45. Z. Dong, X. Le, Y. Liu, C. Donga, and J. Ma (2014). J. Mater. Chem. A 2, 18775.

    Article  CAS  Google Scholar 

  46. N. Cyril, J. B. George, L. Joseph, and V. P. Sylas (2018). J. Clust. Sci. 30, 459.

    Article  CAS  Google Scholar 

  47. B. Kumar, K. Smita, Y. Angulo, and L. Cumbal (2016). J. Clust. Sci. 27, 703.

    Article  CAS  Google Scholar 

  48. S. Raj, H. Singh, R. Trivedi, and V. Soni (2020). Sci. Rep. 10, 9616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. L. N. Dlamini, R. W. Krause, G. U. Kulkarni, and S. H. Durbach (2011). Appl. Water Sci. 1, 19.

    Article  CAS  Google Scholar 

  50. P. Mohammadi, M. M. Heravi, and S. Sadjadi (2020). Sci. Rep. 10, 1.

    Article  CAS  Google Scholar 

  51. M. Hu, X. Yan, X. Hu, R. Feng, and M. Zhou (2019). J. Sol-Gel Sci. Technol. 89, 754.

    Article  CAS  Google Scholar 

  52. M. Goswami, D. Baruah, and A. M. Das (2018). New J. Chem. 42, 10868.

    Article  CAS  Google Scholar 

  53. M. Chandhru, S. K. Rani, and N. Vasimalai (2020). J. Environ. Chem. Eng. 8, 104225.

    Article  CAS  Google Scholar 

  54. H. Kolya, P. Maiti, A. Pandey, and T. Tripathy (2015). Anal. Sci. Technol. 6, 33.

    Article  CAS  Google Scholar 

  55. C. Umamaheswari, A. Lakshmanan, and N. S. Nagarajan (2018). J. Photochem. Photobiol. B 178, 33.

    Article  CAS  PubMed  Google Scholar 

  56. A. R. Vartooni, M. Nasrollahzadeh, and M. Alizadeh (2016). J. Alloys Compd. 680, 309.

    Article  CAS  Google Scholar 

  57. S. A. A. Vandarkuzhali, S. Karthikeyan, B. Viswanathan, and M. P. Pachamuthu (2018). Surf. Interfaces 13, 101.

    Article  CAS  Google Scholar 

  58. T. Sowmyya and G. Vijaya Lakshmi (2018). BioNanoSci. 8, 179.

    Article  Google Scholar 

  59. A. T. Khalil, M. Ovais, I. Ullah, M. Ali, Z. K. Shinwari, S. Khamlich, and M. Maaza (2017). Nanomedicine 12, 1767.

    Article  CAS  PubMed  Google Scholar 

  60. M. Sorbiun, E. S. Mehr, A. Ramazani, and S. T. Fardood (2018). Int. J. Environ. 12, 29.

    Article  CAS  Google Scholar 

  61. C. G. Kumar and Y. Poornachandra (2015). Colloid Surf. B. 125, 110.

    Article  CAS  Google Scholar 

  62. T. Cui, J. J. Liang, H. Chen, D. D. Geng, L. Jiao, J. Y. Yang, H. Qian, C. Zhang, and Y. Ding (2017). ACS Appl. Mater. Interfaces 9, 8569.

    Article  CAS  PubMed  Google Scholar 

  63. H. E. A. Mohamed, S. Afridi, A. T. Khalil, D. Zia, J. Iqbal, I. Ullah, Z. K. Shinwari, and M. Maaza (2019). Mater. Res. Express 6, 1050.

    Google Scholar 

  64. A. Shah, G. Lutfullah, K. Ahmad, A. T. Khalil, and M. Maaza (2018). Green Chem. Lett. Rev. 11, 318.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Shahani Begum thanks the Department of Science & Technology (DST), Ministry of Science & Technology, Govt. of India, for financial support to conduct her doctoral research work by virtue of an award of the DST-INSPIRE Fellowship (Fellowship ID- IF140094). Helpful discussions with Dr. P. S. Nayak, Research Associate, Indian Institute of Science, Bangalore (India) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep K. Chand.

Ethics declarations

Conflict of interest

We, all co-authors declare that we have no potential conflict of interest in any matters pertaining to academic or financial component of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begum, S., Nayak, B. & Chand, P.K. Nanosilver Particles Coated with Sida acuta Burm. f. Transformed ‘Hairy Root’ Extract for Efficient Biocatalytic Degradation of Organic Dyes. J Clust Sci 33, 1069–1082 (2022). https://doi.org/10.1007/s10876-021-02038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02038-z

Keywords

Navigation