Skip to main content
Log in

Bound states and scattering phase shift of relativistic spinless particles with screened Kratzer potential

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The bound and scattering states of relativistic spinless particles with screened Kratzer potential were investigated using the modified factorization method. We employed the Greene–Aldrich approximation scheme and a coordinate transformation to obtain the approximate bound state energy eigenvalues in terms of the hypergeometric function, bound state eigenfunction, scattering state energy relation and scattering phase shift, respectively. The analytical and numerical results were presented. The effects of the potential parameters on the bound state energy eigenvalues and the scattering phase shift were discussed extensively and graphically. Our results promise to be very relevant in many areas of theoretical physics, chemistry, mathematics and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C Y Chen, D S Sun and F L Lu, Phys. Lett. A 330 424 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  2. S Miraboutalebi Eur. Phys. J. Plus 135 16 (2020)

    Article  Google Scholar 

  3. G F Wei, S H Dong and V B Bezerra Int. J. Mod. Phys. A 24 161 (2009)

    Article  ADS  Google Scholar 

  4. G F Wei, X Y Liu and W L Chen Int. J. Theor. Phys. 48 1649 (2009)

    Article  Google Scholar 

  5. B Biswas and S Debnath Afr. Rev. Phys. 8 113 (2013)

    Google Scholar 

  6. H Hassanabadi and B H Yazarloo Ind. J. Phys. 87 1017 (2013)

    Article  Google Scholar 

  7. A Kratzer Z. Phys. A Hadrons Nucl. 3 289 (1920)

    Google Scholar 

  8. P M Morse Phys. Rev. 34 57 (1929)

    Article  ADS  Google Scholar 

  9. C Eckart Phys. Rev. 35 1303 (1930)

    Article  ADS  Google Scholar 

  10. M Rosen and P M Morse Phys. Rev. 42 210 (1932)

    Article  ADS  Google Scholar 

  11. M F Manning and N Rosen Phys. Rev. 44 951 (1933)

    Article  Google Scholar 

  12. D R Woods and D S Saxon Phys. Rev. 95 577 (1954)

    Article  ADS  Google Scholar 

  13. M Hamzavi, M Movahedi, K E Thylwe and A A Rajabi Chin. Phys. Lett. 29 080302 (2012)

    Article  ADS  Google Scholar 

  14. H. Yanar, A. Havare, K. Sogut, Adv. High Energy Phys. 2014 1 (2014). https://doi.org/10.1155/2014/840907

    Article  Google Scholar 

  15. H P Obong, A N Ikot, I O Owate and H Hassanabadi New Phys. Sae Mulli. 66 199 (2016)

    Article  Google Scholar 

  16. A N Ikot, H Hassanabadi and T M Abbey Commun. Theor. Phys. 64 637 (2015)

    Article  Google Scholar 

  17. M C Zhang, G H Sun and S H Dong Phys. Lett. A 374 704 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. A D Antia, A N Ikot, H Hassanabadi and E Maghsodi Ind. J. Phys. 87 1133 (2013)

    Article  Google Scholar 

  19. A N Ikot, H Hassanabadi, H P Obong, Y C Umoren, C N Isonguyo and B H Yazarloo Chin. Phys. B 23 120303 (2014)

    Article  Google Scholar 

  20. L H Zhang, X P Li and C S Jia Int. J. Quant. Chem. 111 1870 (2011)

    Article  Google Scholar 

  21. A N Ikot, O A Awoga, A D Antia, H Hassanabadi and E Maghsodi Few-Body Syst. 54 2014

    Google Scholar 

  22. H Cifti, R L Hall and N Saad J. Phys. A Math. Gen. 36 11807 (2003)

    Article  ADS  Google Scholar 

  23. K S Alsadi Appl. Math. 9 1931 (2015)

    MathSciNet  Google Scholar 

  24. S M Ikhdair and J. Abu-Hasna Phys. Scr. 83 025002 (2011)

    Article  ADS  Google Scholar 

  25. S M Ikhdair and R Sever J. Math. Chem. 45 1137 (2009)

    Article  MathSciNet  Google Scholar 

  26. S H Dong Factorization method in Quantum Mechanics (Armsterdam: Springer) (2007)

    Book  MATH  Google Scholar 

  27. J Y Liu, G U Zhang and C S Jia Phys. Lett. A 377 1444 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. H M Tang, G C Liang, L H Zhang, F Zhao and C S Jia Can. J. Chem. 92 341 (2014)

    Article  Google Scholar 

  29. C S Jia and Y Jia Eur. Phys. J. D 71 3 (2017)

    Article  ADS  Google Scholar 

  30. U S Okorie, E E Ibekwe, M C Onyeaju and A N Ikot Euro. Phys. J. Plus 133 433 (2018)

    Article  Google Scholar 

  31. M R Setare and E Karimi Phys. Scr. 75 90 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. C Tezcan and R Sever Int. J. Theor. Phys. 48 337 (2009)

    Article  Google Scholar 

  33. G Chen Phys. Lett. A 326 55 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  34. M C Onyeaju, J O A Idiodi, A N Ikot, M Solaimani and H Hassanabadi J. Opt. 46 254 (2017)

    Article  Google Scholar 

  35. B C Lutfuoglu, F Akdeniz and O Bayrak J. Math. Phys. 57 032103 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. C A Onate, M C Onyeaju and A N Ikot Ann. Phys. 375 239 (2016)

    Article  ADS  Google Scholar 

  37. H Hassanabadi and S Zare Eur. Phys. J. Plus 132 49 (2017)

    Article  Google Scholar 

  38. A Tas, O Aydogdu and M Salti Ann. Phys. 379 67 (2017)

    Article  ADS  Google Scholar 

  39. A Tas, O Aydogdu and M Salti J. Korean Phys. Soc. 70 896 (2017)

    Article  ADS  Google Scholar 

  40. B H Yazarloo and H Mehraban Commun. Theor. Phys. 67 71 (2017)

    Article  ADS  Google Scholar 

  41. X Chun-Long and Z Min-Cang J. Kor. Phys. Soc. 70 129 (2017)

    Article  Google Scholar 

  42. Y C Chen, F L Lu and D S Sun Commun. Theor. Phys. 45 889 (2006)

    Article  ADS  Google Scholar 

  43. W C Qiang, K Li and W L Chen J. Phys. A: Math. Theor. 42 205306 (2009)

    Article  ADS  Google Scholar 

  44. W C Qiang, W L Chen, K Li and G F Wei Phys. Scr. 79 025005 (2009)

    Article  ADS  Google Scholar 

  45. A Arda and R Sever J. Math. Phys. 52 092101 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  46. Y Yuan, L F Lin, D S Sun and C Y Chen Commun. Theor. Phys. 62 315 (2014)

    Article  ADS  Google Scholar 

  47. A N Ikot, H P Obong, T M Abbey, S Zare, M Ghafourian and H Hassanabadi Few-Body Syst. 57 807 (2016)

    Article  ADS  Google Scholar 

  48. A Tas and A Havare Few-Body Syst. 59 52 (2018)

    Article  Google Scholar 

  49. A N Ikot, U S Okorie, R Sever and G J Rampho Eur. Phys. J. Plus 134 386 (2019)

    Article  Google Scholar 

  50. R L Greene and A Aldrich Phys. Rev. A 14 2363 (1976)

    Article  ADS  Google Scholar 

  51. L D Landau and E M Lifshitz Quantum Mechanics, Non-Relativistic Theory, 3rd edn. (Pergamon: New York) (1977)

    MATH  Google Scholar 

  52. R Khordad and B Mirhosseini Opt. Spectrosc. 117 434 (2014)

    Article  ADS  Google Scholar 

  53. B Xiao, K Guo, S Mou and Z Zhang Superlattices Microstruct. 69 122 (2014)

    Article  ADS  Google Scholar 

  54. R Khordad and B Mirhosseini Pramana J. Phys. 85 723 (2015)

    Article  ADS  Google Scholar 

  55. M C Onyeaju, J O A Idiodi, A N Ikot, M Solaimani and H Hassanabadi Few-Body Syst. 57 793 (2016)

    Article  ADS  Google Scholar 

  56. S Xiao-Qin, W Chao-Wen and J Chun-Sheng Chem. Phys. Lett. 673 50 (2017)

    Article  ADS  Google Scholar 

  57. A N Ikot, E O Chukwuocha, M C Onyeaju, C A Onate, B I Ita and M E Udoh Pramana J. Phys. 90 22 (2018)

    Article  ADS  Google Scholar 

  58. US Okorie, EE Ibekwe, AN Ikot, MC Onyeaju, EO Chukwuocha J. Korea. Phys. Soc. 73, 1211 (2018)

    Article  ADS  Google Scholar 

  59. U S Okorie, A N Ikot, M C Onyeaju and E O Chukwuocha J. Mol. Mod. 24 289 (2018)

    Article  Google Scholar 

  60. U S Okorie, A N Ikot, M C Onyeaju and E O Chukwuocha Rev. Mex. Fis. 64 608 (2018)

    Article  Google Scholar 

  61. U S Okorie, C O Edet, A N Ikot, G J Rampho and R Sever Ind. J. Phys. (2020). https://doi.org/10.1007/s12648-019-01670-w

    Article  Google Scholar 

  62. C S Jia, C W Wang, L H Zhang, X L Peng, R Zeng and X T You, Chem. Phys. Lett. 676 150 (2017)

    Article  ADS  Google Scholar 

  63. C S Jia, C W Wang, L H Zhang, X L Peng, H M Tang and R Zeng, Chem. Eng. Sci. 183 26 (2018)

    Article  Google Scholar 

  64. C S Jia, R Zeng, X L Peng, L H Zhang and Y L Zhao, Chem. Eng. Sci. 190 1 (2018)

    Article  Google Scholar 

  65. X L Peng, R Jiang, C S Jia, L H Zhang and Y L Zhao, Chem. Eng. Sci. 190 122 (2018)

    Article  Google Scholar 

  66. R Jiang, C S Jia, Y Q Wang, X L Peng and L H Zhang, Chem. Phys. Lett. 715 186 (2019)

    Article  ADS  Google Scholar 

  67. J Wang, C S Jia, C J Li, X L Peng, L H Zhang and J Y Liu, ACS Omega 4 19193 (2019)

    Article  Google Scholar 

  68. B Tang, Y T Wang, X L Peng, L H Zhang and C S Jia, J. Mol. Spect. 1199 126958 (2020)

    Google Scholar 

  69. W S Chung and H Hassanabadi Mod. Phys. Lett. B 32 1850123 (2018)

    Article  ADS  Google Scholar 

  70. H Sobhani, W S Chung and H Hassanabadi Eur. Phys. J. C 78 106 (2018)

    Article  ADS  Google Scholar 

  71. S Sargolzacipor, H Hassanabadi and W S Chung Eur. Phys. J. Plus 133 125 (2018)

    Article  Google Scholar 

  72. B C Lutfuoglu Can. J. Phys. 96 843 (2018)

    Article  ADS  Google Scholar 

  73. S A Najafizade, H Hassanabadi and S Zarrinkamar Chin. Phys. B 25 040301 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. Okorie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okorie, U.S., Taş, A., Ikot, A.N. et al. Bound states and scattering phase shift of relativistic spinless particles with screened Kratzer potential. Indian J Phys 95, 2275–2284 (2021). https://doi.org/10.1007/s12648-020-01908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01908-y

Keywords

Navigation