Skip to main content
Log in

Influence of Thermal Effects on the Transport Characteristics of Cellulose Acetate Porous Films

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

Experimental data have been obtained, and the characteristics of the moisture content and permeability of cellulose acetate porous materials were analyzed via thermal action. Dynamic thermogravimetric analysis found that the destruction process in an air-dry sample of the membrane begins at 21°C. It is accompanied by a 2% weight loss and an endothermic effect. The destruction ends at 50°C. With a subsequent increase in temperature, the manifestation of endothermic effect continues a temperature of 120–175°C with the maximum rate of mass loss at 146°C. The weight loss ends at about 190°C and is 6.5%. The study of MGA-80 and MGA-95 porous cellulose acetate films at transmembrane pressure upon temperature exposure showed that the permeability and specific output flow to water increase as the temperature rises to 50°C. Analysis of dependences of the specific output flow on temperature revealed that the specific output flow to water increases by ~18% upon an initial temperature rise of 10°C. This is due to structural changes in the cellulose acetate layer. A further increase in temperature by 15°C leads to an increase in permeability by ~10%. These phenomena are associated with the process of structural transformation in the active layer and the polymer substrate of the MGA-95 and MGA-80P membranes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Vasil’eva, V.I., Akberova, E.M., and Zabolotskii, V.I., Russ. J. Electrochem., 2017, vol. 53, no. 4, p. 398.

    Article  Google Scholar 

  2. Anashkin, I.P., Klinov, A.V., and Anashkina, A.V., Vestn. Kazan. Tekhnol. Univ., 2017, vol. 20, no. 22, p. 48.

    Google Scholar 

  3. Smagin, V.N., Zhurov, N.N., Yaroshevsky, D.A., and Yevdokimov, O.Y., Desalination, 1983, vol. 46, nos. 1–3, p. 253.

    Article  Google Scholar 

  4. Onuki, K., Hwang, G.J., and Arifal Shimizu, S., J. Membr. Sci., 2001, vol. 192, nos. 1–2, p. 193.

    Article  Google Scholar 

  5. Pourcelly, G., Nikonenko, V.V., Pismenskaya, N.D., and Yaroslavtsev, A.V., in Ionic Interactions in Natural and Synthetic Macromolecules, Hoboken, NJ: Wiley, 2012, p. 761.

    Google Scholar 

  6. Pis’menskaya, N.D., Nikonenko, V.V., Mel’nik, N.A., Pourcelli, G., and Larchet, K., Russ. J. Electrochem., 2012, vol. 48, no. 6, p. 610.

    Article  Google Scholar 

  7. Klinov, A.V., Anashkin, I.P., and Akberov, R.R., High Temp., 2018, vol. 56, no. 1, p. 70.

    Article  Google Scholar 

  8. Akberova, E.M., Yatsev, A.M., Kozhukhova, E.Yu., and Vasil’eva, V.I., Kondens. Sredy Mezhfaznye Granitsy, 2017, vol. 19, no. 2, p. 158.

    Google Scholar 

  9. Akberova, E.M., Kondens. Sredy Mezhfaznye Granitsy, 2017, vol. 19, no. 3, p. 314.

    Google Scholar 

  10. Vasil’eva, V.I., Pismenskaya, N.D., Akberova, E.M., and Nebavskaya, K.A., Russ. J. Phys. Chem. A, 2014, vol. 88, nos. 7–8, p. 1293.

    Article  Google Scholar 

  11. Shustov, I.I., Koitov, S.A., and Mel’nikov, V.N., Vestn. Samarsk. Gos. Aerokosm. Univ., 2014, no. 1(43), p. 181.

  12. Kuchina, Yu.A., Dolgopyatova, N.V., Novikov, V.Yu., Konovalova, I.N., Printseva, M.Yu., and Sagaidachnyi, V.A., Vestn. Murmansk. Gos. Tekh. Univ., 2015, no. 1, p. 94.

  13. Semiletova, E.S., Zyablov, A.N., and Selemenev, V.F., Sorbtsionnye Khromatogr. Protsessy, 2012, vol. 12, no. 5, p. 734.

    Google Scholar 

  14. Goosen, M.F.A., Sablani, S.S., Al-Maskari, S.S., Al-Belushi, R.H., and Wilf, M., Desalination, 2002, vol. 144, nos. 1–3, p. 367.

    Article  Google Scholar 

  15. Zhao, S. and Zou, L., Desalination, 2011, vol. 278, nos. 1–3, p. 157.

    Article  Google Scholar 

  16. You, S.-J., Wang, X.-H., Zhong, M., Zhong, Y.-J., Yu, C., and Ren, N.-Q., Chem. Eng. J., 2012, vols. 198–199, p. 52.

    Article  Google Scholar 

  17. Phuntsho, S., Vigneswaran, S., Kandasamy, J., Hong, S., Lee, S., and Shon, H.K., J. Membr. Sci., 2012, vols. 415–416, p. 734.

    Article  Google Scholar 

  18. Eremin, E.N., Filippov, Yu.O., Minnekhanov, G.N., and Lopaev, B.E., Omsk. Nauchn. Vestn., 2013, no. 1(117), p. 63.

  19. Hawari, Al.H., Kamal, N., and Altaee, A., Desalination, 2016, vol. 398, p. 98.

    Article  Google Scholar 

  20. Lee, J.-G., Alsaadi, A.S., Karam, A.M., Francis, L., Soukane, S., and Ghaffour, N., J. Membr. Sci., 2017, vol. 544, p. 126.

    Article  Google Scholar 

  21. Bushman, A.V., Lomonosov, I.V., Fortov, V.E., and Khishchenko, K.V., Khim. Fiz., 1994, vol. 13, no. 1, p. 64.

    Google Scholar 

  22. Bushman, A.V., Lomonosov, I.V., Fortov, V.E., and Khishchenko, K.V., Khim. Fiz., 1994, vol. 13, no. 5, p. 97.

    Google Scholar 

  23. Lazarev, S.I., Lazarev, K.S., Kovaleva, O.A., Kazakov, V.G., and Strel’nikov, A.E., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2017, vol. 60. Vyp. 5, p. 74.

  24. Kotova, D.L. and Selemenev, V.F., Termicheskii analiz ionoobmennykh materialov (Thermal Analysis of Ion-Exchange Materials), Moscow: Nauka, 2002.

  25. Zavastin, D. Cretescu, I., Bezdadea, M., Bourceanu, M., Drăgan, M., Lisa, G., Mangalagiu, I., Vasić, V., and Savić, J., Colloids Surf., A, 2010, vol. 370, nos. 1–3, p. 120.

    Article  Google Scholar 

  26. Kamal, H., Abd-Elrahim, F.M. and Lotfy, S., J. Radiat. Res. Appl. Sci., 2014, vol. 7, no. 2, p. 146.

    Article  Google Scholar 

  27. Lazarev, S.I., Golovin, Yu.M., Kovalev, S.V., and Lazarev, D.S., High Temp., 2019, vol. 57, no. 5, p. 641.

    Article  Google Scholar 

  28. Mel’nikova, G.B., Zhavnerko, G.K., Chizhik, S.A., and Bil’dyukevich, A.V., Pet. Chem., 2016, vol. 56, p. 406.

    Article  Google Scholar 

  29. Lazarev, S.I., Golovin, Yu.M., Khorokhorina, I.V., Kovalev, S.V., and Levin, A.A., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2019, vol. 62, no. 10, p. 89.

    Article  Google Scholar 

  30. Deryagin B.V., Churaev, N.V., and Muller, V.M., Poverhnostnye sily (Surface Forces), Moscow: Nauka, 1985.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-38-90117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Lazarev.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, S.I., Golovin, Y.M., Kovalev, S.V. et al. Influence of Thermal Effects on the Transport Characteristics of Cellulose Acetate Porous Films. High Temp 58, 812–817 (2020). https://doi.org/10.1134/S0018151X20060139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20060139

Navigation