Skip to main content

Advertisement

Log in

Coastal Meadow Vegetation Following a Century of Shielding Behind a Dike

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

It is still common practice in Europe to dike salt marshes for agricultural use. This impacts both the vegetation and physical environment of the marsh. We studied the plant community, environmental conditions, and determined correlations between vegetation cover and diversity with environmental factors on an enclosed marsh, which has been behind a dike since 1890. Vegetation data from both salt marshes without dikes and fresh meadows are routinely sampled by the Danish Environmental Protection Agency and were here used to assess whether the plant community of the shielded marsh resembled that of either salt marshes or fresh meadows. The century-long elimination of tidal and storm flooding has resulted in low salinity levels (0.4–5.13 ppt), low available P (0.36–4.90 mg/100 g soil), and high total N (0.68–28.82 g/kg). The plant community of the shielded marsh demonstrated a mean species richness (11.4) similar to that of other salt marshes but was no longer characterized by the same composition of halophytes (ANOSIM, p < 0.001). However, despite the century-long shielding the vegetation does not resemble that of the nearby fresh meadow community (ANOSIM, p < 0.001). Therefore, prohibiting tidal floodings by dikes does not protect the salt marsh habitat but instead results in a habitat that contains both halophytes and glycophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, J.B., and G.C. Bate. 1994. The effect of salinity and inundation on the estuarine macrophyte Sarcocornia perennis (Mill.) A.J. Scott. Aquatic Botany 47 (3-4): 341–348.

    Article  Google Scholar 

  • Addinsoft. 2019. XLSTAT Software. Version 2020.1.1. Addinsoft, Paris, France.

  • Andersen, L.H., A.S.K. Skærbæk, T.B. Sørensen, J.S. Knudsen, C. Pertoldi, S. Bahrndorff, and D. Bruhn. 2020. Turnover and change in plant species composition in a shielded salt marsh following variation in precipitation and temperature. Journal of Vegetation Science 00: 1–11.

    Google Scholar 

  • Andersen, L.H., P. Nummi, S. Bahrndorff, C. Pertoldi, K. Trøjelsgaard, T.L. Lauridsen, J. Rafn, C.M.S. Frederiksen, M.P. Kristjansen, and D. Bruhn. 2021. Reed bed vegetation structure and plant species diversity depend on management type and the time period since last management. Applied Vegetation Science 24 (1). https://doi.org/10.1111/avsc.12531.

  • Bakker, J.P., P. Esselink, K.S. Dijkema, W.E. Van Duin, and D.J. De Jong. 2002. Restoration of salt marshes in the Netherlands. Hydrobiologia 478 (1/3): 29–51.

    Article  Google Scholar 

  • Barkowski, J.W., K. Kolditz, H. Brumsack, and H. Freund. 2009. The Impact of Tidal Inundation on Salt Marsh Vegetation after De-Embankment on Langeoog Island, Germany—Six Years Time Series of Permanent Plots. Journal of Coastal Conservation 13 (4): 185–206.

    Article  Google Scholar 

  • Bazely, D.R., and R.L. Jefferies. 1985. Goose faeces: a source of nitrogen for plant growth in a grazed salt marsh. Journal of Applied Ecology 22 (3): 693–703.

    Article  Google Scholar 

  • Bulleri, F., and M.G. Chapman. 2010. The introduction of coastal infrastructure as a driver of change in marine environments. Journal of Applied Ecology 47 (1): 26–35.

    Article  Google Scholar 

  • Burholt, T., O. Lilleør, and B.M. Jepsen. 1994. Vejlerne botanisk set - en oversigt. Urt 18: 99–104.

    Google Scholar 

  • Cañadas, E.M., M.N. Jiménez, F. Valle, E. Fernández-Ondoño, F. Martín-Peinado, and F.B. Navarro. 2010. Soil–vegetation relationships in semi-arid Mediterranean old fields (SE Spain): Implications for management. Journal of Arid Environments 74 (11): 1525–1533.

    Article  Google Scholar 

  • Cott, G.M., D.V. Chapman, and M.A.K. Jansen. 2013. Salt Marshes on Substrate Enriched in Organic Matter: The Case of Ombrogenic Atlantic Salt Marshes. Estuaries and Coasts 36 (3): 595–609.

    Article  CAS  Google Scholar 

  • Council Of The European Commission. 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities, Series L 206: 7–49.

    Google Scholar 

  • Crain, C. M., Silliman, B. R., Bertness, S. L., and Bertness, M. D. 2004. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85 (9): 2539–2549.

  • Danish Environmental Protection Agency. 2016. Habitatbeskrivelser, årgang 2016. Beskrivelse af danske naturtyper omfattet af habitatdirektivet (NATURA 2000 typer). Denmark: Danish Environmental Protection Agency.

    Google Scholar 

  • Danish Environmental Protection Agency. 2011. Danmarks Miljøportal, Terrestriske habitatnaturtyper (2011-2015) (Aktivitet ID 562175). http://naturereport.miljoeportal.dk/562175?format=pdf [22.11., 2017].

  • Danish Environmental Protection Agency. 2005a. Danmarks miljøportal, Lysåbne naturtyper (aktivitet ID 434435). http://naturereport.miljoeportal.dk/434435?format=pdf [22.11., 2017].

  • Danish Environmental Protection Agency. 2005b. Danmarks miljøportal, Lysåbne naturtyper (aktivitet ID 436800). http://naturereport.miljoeportal.dk/436800?format=pdf [22.11., 2017].

  • Danish Standards Association. 1975. DS 224:1975 Water analysis Determination of ammonia nitrogen. Denmark: Copenhagen.

    Google Scholar 

  • Danish Standards Association. 1980. DS 204:1980 Determination of total residue and total fixed residue in water, sludge and sediment. Denmark: Copenhagen.

    Google Scholar 

  • Danish Standards Association. 1991. DS 223:1991 Water analysis - Determination of the sum of nitrite- and nitrate-nitrogen. Denmark: Hellerup.

    Google Scholar 

  • Danish Standards Association. 2003. DS 259:2003 Determination of metals in water, sludge and sediments - General guidelines for determination by atomic absorption spectrophotometry in flame. Denmark: Charlottenlund.

    Google Scholar 

  • Doody, J.P. 2008a. Management of Natura 2000 habitats Atlantic salt meadows (Glauco Puccinellietalia maritimae) 1330. European Commission.

  • Doody, J.P. 2008b. Saltmarsh Conservation, Management and Restoration. Netherlands: Springer.

    Book  Google Scholar 

  • Egan, T.P., and I.A. Ungar. 2001. Competition between Salicornia europaea and Atriplex prostrata (Chenopodiaceae) along an experimental salinity gradient. Wetlands Ecology and Management 9 (6): 457–461.

    Article  Google Scholar 

  • Ellenberg, H., H.W. Weber, R. Düll, V. Wirthand, and W. Werner. 2001. Zeigerwerte von Pflanzen in Mitteleuropa. Göttingen: Goltze.

    Google Scholar 

  • El-Sheikh, M., and G.A. Abbadi. 2004. Biodiversity of plant communities in the Jal Az-Zor National Park, Kuwait. Kuwait Journal of Science & Engineering 31: 77–105.

    Google Scholar 

  • European Commission. 2013. Interpretation manual of European Union habitats. EUR 28: 146. European Commission, DG Environment, Brussels

  • European Environmental Agency. 2019. Natura 2000 - Birds and Habitats Directives Denmark. Permalink: f4640babe4b84a24a6a4166253e957ea

  • Fanelli, G., P. Tescarollo, and A. Testi. 2006. Ecological indicators applied to urban and suburban floras. Ecological Indicators 6 (2): 444–457.

    Article  Google Scholar 

  • Faurholdt, N., and J.C. Schou. 2012. Danmarks skærmplanter. Thisted: BFN.

    Google Scholar 

  • Feagin, R.A., S.M. Lozada-Bernard, T.M. Ravens, I. Möller, K.M. Yeager, and A.H. Baird. 2009. Does vegetation prevent wave erosion of salt marsh edges? Proceedings of the National Academy of Sciences 106 (25): 10109–10113.

    Article  CAS  Google Scholar 

  • Fox, J., and S. Weisberg. 2011. An R companion to applied regression. Los Angeles: Sage.

    Google Scholar 

  • Frederiksen, S., F.N. Rasmussen, and O. Seberg. 2006. Dansk flora. Copenhagen: Gyldendal.

    Google Scholar 

  • Fredshavn, J. 2012. Tilstandsvurdering af habitatnaturtyper 2010-11. NOVANA. Denmark: DCE - Nationalt Center for Miljø og Energi.

    Google Scholar 

  • Fredshavn, J., B. Søgaard, B. Nygaard, L.S. Johansson, P. Wiberg-Larsen, and K. Dahl. 2014. Bevaringsstatus for naturtyper og arter. Denmark: DCE – Nationalt Center for Miljø og Energi.

    Google Scholar 

  • Ganong, W.F. 1903. The Vegetation of the Bay of Fundy Salt and Diked Marshes: An Ecological Study. Botanical Gazette 36 (5): 349–367.

    Article  Google Scholar 

  • Garbutt, A., and M. Wolters. 2008. The natural regeneration of salt marsh on formerly reclaimed land. Applied Vegetation Science 11 (3): 335–344.

    Article  Google Scholar 

  • García, L.V., T. Marañón, A. Moreno, and L. Clemente. 1993. Above-ground biomass and species richness in a Mediterranean salt marsh. Journal of Vegetation Science 4 (3): 417–424.

    Article  Google Scholar 

  • Gedan, K.B., B.R. Silliman, and M.D. Bertness. 2009. Centuries of Human-Driven Change in Salt Marsh Ecosystems. Annual Review of Marine Science 1 (1): 117–141.

    Article  Google Scholar 

  • Godefroid, S. 2001. Temporal analysis of the Brussels flora as indicator for changing environmental quality. Landscape and Urban Planning. Landscape and Urban Planning 52: 203–224.

    Article  Google Scholar 

  • Hacker, S.D., and M.D. Bertness. 1999. Experimental Evidence for Factors Maintaining Plant Species Diversity in a New England Salt Marsh. Ecology 80 (6): 2064–2073.

    Article  Google Scholar 

  • Harrison, E.Z., and A.L. Bloom. 1977. Sedimentation rates on tidal salt marshes in Connecticut. Journal of Sedimentary Research 47: 1484–1490.

    Google Scholar 

  • Mossman, H.L., A.J. Davy, and A. Grant. 2012. Does managed coastal realignment create saltmarshes with 'equivalent biological characteristics' to natural reference sites? Journal of Applied Ecology 49 (6): 1446–1456.

    Article  Google Scholar 

  • Hardie, M., and R. Doyle. 2012. Measuring soil salinity. Methods in Molecular Biology 913: 415–425.

    CAS  Google Scholar 

  • Ibarra-Obando, S.E., M. Poumian-Tapia, and H.N. Morzaria-Luna. 2010. Long-Term Effects of Tidal Exclusion on Salt Marsh Plain Species at Estero de Punta Banda, Baja California. Estuaries and Coasts 33 (3): 753–768.

    Article  CAS  Google Scholar 

  • ISO 16948. 2015. Solid biofuels - Determination of total content of carbon, hydrogen and nitrogen (ISO 16948:2015). Geneva: International Organization for Standardization.

    Google Scholar 

  • ISO 6878. 2004. Water Quality - Determination of Phosphorus - Ammonium Molybdate Spectrometric Method. Geneva: International Organization for Standardization.

    Google Scholar 

  • Jakobsen, I., and S. Sørensen. 1993. Vejlerne, Folk og natur i fortid og nutid. Denmark: Lokalhistorisk Forening for Sydhannæs.

    Google Scholar 

  • Jensen, A. 1985. The effect of cattle and sheep grazing on salt-marsh vegetation at Skallingen, Denmark. Vegetatio 60 (1): 37–48.

    Article  Google Scholar 

  • Jensen, K., C.J. Burk, and M.M. Holland. 2018. A Floristic Survey and Comparison of Marsh Vegetation Ranging From Non-Tidal Freshwater To Ocean Salinities Along the Elbe (Germany) and Connecticut (Northeastern USA) Rivers. Rhodora 120 (983): 202–228.

    Article  Google Scholar 

  • Kent, M. 2011. Vegetation description and data analysis: a practical approach. Wiley.

  • Kiehl, K., P. Esselink, and J.P. Bakker. 1997. Nutrient Limitation and Plant Species Composition in Temperate Salt Marshes. Oecologia 111 (3): 325–330.

    Article  CAS  Google Scholar 

  • Kjeldsen, J.P. 2008. Ynglefugle i Vejlerne efter inddæmningen, med særlig vægt på feltstationsårene 1978-2003. Dansk Ornitologisk Forenings Tidsskrift 102: 1–238.

    Google Scholar 

  • Kjeldsen, J.P., and H.H. Nielsen. 2008. Overvågning af ynglefugle i Vejlerne, 2007. Danmarks Miljøundersøgelser: Aarhus Universitet.

    Google Scholar 

  • Leonardi, N., N.K. Ganju, and S. Fagherazzi. 2016. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proceedings of the National Academy of Sciences 113 (1): 64–68.

    Article  CAS  Google Scholar 

  • Levine, J.M., J.S. Brewer, and M.D. Bertness. 1998. Nutrients, Competition and Plant Zonation in a New England Salt Marsh. Journal of Ecology 86 (2): 285–292.

    Article  Google Scholar 

  • Levy, E.B., and E.A. Madden. 1933. The point method for pasture analysis. New Zealand Journal of Agriculture 46: 267–279.

    Google Scholar 

  • Li, J., Y. Lai, R. Xie, X. Ding, and C. Wu. 2018a. Sediment phosphorus speciation and retention process affected by invasion time of Spartina alterniflora in a subtropical coastal wetland of China. Environmental Science and Pollution Research 25 (35): 35365–35375.

    Article  CAS  Google Scholar 

  • Li, S., B. Cui, J. Bai, T. Xie, J. Yan, Q. Wang, and S. Zhang. 2018b. Effects of soil abiotic factors on the plant morphology in an intertidal salt marsh, Yellow River Delta, China. Physics and Chemistry of the Earth 103: 75–80.

    Article  Google Scholar 

  • Ling, K.A. 2003. Using environmental and growth characteristics of plants to detect long-term changes in response to atmospheric pollution: some examples from British beechwoods. The Science of the Total Environment 310 (1-3): 203–210.

    Article  CAS  Google Scholar 

  • Liu, S., X. Hou, M. Yang, F. Cheng, A. Coxixo, X. Wu, and Y. Zhang. 2018. Factors driving the relationships between vegetation and soil properties in the Yellow River Delta, China. Catena 165: 279–285.

    Article  CAS  Google Scholar 

  • McCune, B., and J.B. Grace. 2002. Analysis of Ecological Communities. In MjM Software Design, 303–305. Gleneden Beach: Elsevier.

    Google Scholar 

  • Miljøministeriet. 2009. Vejledning om naturbeskyttelsesloven § 3 beskyttede naturtyper. Denmark: By- og Landskabsstyrelsen.

    Google Scholar 

  • Min, B., and J. Kim. 1999a. Plant community structure in reclaimed lands on the West Coast of Korea. Journal of Plant Biology 42 (4): 287–293.

    Article  Google Scholar 

  • Min, B., and J. Kim. 1999b. Plant distribution in relation to soil properties of reclaimed lands on the West Coast of Korea. Journal of Plant Biology 42 (4): 279–286.

    Article  Google Scholar 

  • Mora, J., and D. Burdick. 2013. Effects of man-made berms upon plant communities in New England salt marshes. Wetlands Ecology and Management 21 (2): 131–145.

    Article  Google Scholar 

  • Moreira, M.E.S.D.A. 1992. Recent Saltmarsh Changes and Sedimentation Rates in the Sado Estuary, Portugal. Journal of Coastal Research 8 (3): 631–640.

  • Morgan, P.A., and M.D.O. Adams. 2018. Tidal Marshes in the Saco River Estuary, Maine: A Study of Plant Diversity and Possible Effects of Shoreline Development. Rhodora 119: 304–331.

    Article  Google Scholar 

  • Morris, J.T., and A. Jensen. 1998. The carbon balance of grazed and non-grazed Spartina anglica saltmarshes at Skallingen, Denmark. Journal of Ecology 86 (2): 229–242.

    Article  Google Scholar 

  • Murray, B.C., L. Pendleton, W.A. Jenkins, and S. Sifleet. 2011. Green Payments for Blue Carbon Economic Incentives for Protecting Threatened Coastal Habitats. North Carolina: Nicholas Institute for Environmental Policy Solutions.

    Google Scholar 

  • Nielsen, H.H., and P. Clausen. 2019. Ynglende og rastende fugle i Vejlerne 2015-2017. Denmark: Aarhus Universitet, DCE - Nationalt Center for Miljø og Energi.

    Google Scholar 

  • Nygaard, B., C. Damgaard, K.E. Nielsen, J. Bladt, and R. Ejrnæs. 2016. Terrestriske naturtyper 2004-2015, NOVANA. Denmark: Aarhus Universitet, DCE – Nationalt Center for Miljø og Energi.

    Google Scholar 

  • Odum, W.E. 1988. Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics 19 (1): 147–176.

    Article  Google Scholar 

  • Oksanen, J., F. Guillaume Blanchet, M. Friendly, R. Kindt, P. Legendre, D. Mcglinn, P.R. Minchin, R.B. O'hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs and H. Wagner. 2017. vegan: Community Ecology Package.

  • Patrick, W.H., Jr. 1990. Subsidence, accretion and sea level rise in south San Francisco Bay marshes. Limnology and Oceanography 35 (6): 1389–1395.

    Article  Google Scholar 

  • Pennings, S. C., M. B. Grant, and M. D. Bertness. (2005). Plant zonation in low‐latitude salt marshes: disentangling the roles of flooding, salinity and competition. Journal of ecology 93 (1): 159–167.

  • Portnoy, J.W., and A.E. Giblin. 1997. Effects of Historic Tidal Restrictions on Salt Marsh Sediment Chemistry. Biogeochemistry 36 (3): 275–303.

    Article  CAS  Google Scholar 

  • Purer, E.A. 1942. Plant Ecology of the Coastal Salt Marshlands of San Diego County, California. Ecological Monographs 12 (1): 81–111.

    Article  Google Scholar 

  • QGIS Development Team, 2016. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • R Core Team. 2017. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Ramsar. 2020. The List of Wetlands of International Importance.

  • Riddin, T., and J.B. Adams. 2008. Influence of mouth status and water level on the macrophytes in a small temporarily open/closed estuary. Estuarine, Coastal and Shelf Science 79 (1): 86–92.

    Article  Google Scholar 

  • Riis, N. 2009. Driftsplan for Vejlerne, hovedrapport. Denmark: COWI for Aage V. Jensens Naturfond.

    Google Scholar 

  • Roman, C.T., W.A. Niering, and R.S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction. Environmental Management 8 (2): 141–149.

    Article  Google Scholar 

  • Rozema, J., P. Leendertse, J. Bakker, J. Van Wijnen, D.A. Kreeger, and M.P. Weinstein. 1999. Nitrogen and vegetation dynamics in European salt marshes. In Concept and controversies in tidal marsh ecology, 1–25. Kluwer Academic: Publishers.

    Google Scholar 

  • Santín, C., J.M. De La Rosa, H. Knicker, X.L. Otero, M.Á. Álvarez, and F.J. González-Vila. 2009. Effects of reclamation and regeneration processes on organic matter from estuarine soils and sediments. Organic Geochemistry 40 (9): 931–941.

    Article  CAS  Google Scholar 

  • Schou, J.C. 2006. De danske halvgræsser : en vejledning til de danske halvgræsarter. Klitmøller: BFN.

    Google Scholar 

  • Schou, J.C., P. Wind, and S. Lægaard. 2010. Danmarks siv og frytler. Thisted: BFN.

    Google Scholar 

  • Schou, J.C., P. Wind, and S. Lægaard. 2014. Danmarks græsser. Klitmøller: BFN.

    Google Scholar 

  • Shaltout, K.H., H.F. El-Kady, and Y.M. Al-Sodany. 1995. Vegetation Analysis of the Mediterranean Region of Nile Delta. Vegetatio 116: 73–83.

    Google Scholar 

  • Shannon, C.E., and W. Weaver. 1949. The Mathematical Theory of Communication. Illinois: University of Illinois Press.

    Google Scholar 

  • Stumpf, R.P. 1983. The process of sedimentation on the surface of a salt marsh. Estuarine, Coastal and Shelf Science 17 (5): 495–508.

    Article  Google Scholar 

  • Sun, S., Y. Cai, and X. Tian. 2003. Salt Marsh Vegetation Change After A Short-Term Tidal Restriction In The Changjiang Estuary. Wetlands 23 (2): 257–266.

    Article  Google Scholar 

  • Tessier, M., J. Vivier, A. Ouin, J. Gloaguen, and J. Lefeuvre. 2003. Vegetation dynamics and plant species interactions under grazed and ungrazed conditions in a western European salt marsh. Acta Oecologica 24 (2): 103–111.

    Article  Google Scholar 

  • Theodose, T.A., and J.B. Roths. 1999. Variation in Nutrient Availability and Plant Species Diversity across Forb and Graminoid Zones of a Northern New England High Salt Marsh. Plant Ecology 143 (2): 219–228.

    Article  Google Scholar 

  • Ungar, I.A. 1998. Are Biotic Factors Significant in Influencing the Distribution of Halophytes in Saline Habitats? Botanical Review 64 (2): 176–199.

    Article  Google Scholar 

  • Van Loon-Steensma, J.M., and P.A. Slim. 2013. The Impact of Erosion Protection by Stone Dams on Salt-Marsh Vegetation on Two Wadden Sea Barrier Islands. Journal of Coastal Research 29: 783–796.

    Article  Google Scholar 

  • Van Wijnen, H.J., and J.P. Bakker. 1999. Nitrogen and Phosphorus Limitation in a Coastal Barrier Salt Marsh: The Implications for Vegetation Succession. Journal of Ecology 87 (2): 265–272.

    Article  Google Scholar 

  • Veldkornet, D.A., J.B. Adams, and A.J. Potts. 2015. Where do you draw the line? Determining the transition thresholds between estuarine salt marshes and terrestrial vegetation. South African Journal of Botany 101: 153–159.

    Article  Google Scholar 

  • Veldkornet, D.A., A.J. Potts, and J.B. Adams. 2016. The distribution of salt marsh macrophyte species in relation to physicochemical variables. South African Journal of Botany 107: 84–90.

    Article  CAS  Google Scholar 

  • Vestergaard, P. 2000. Strandenge- en beskyttet naturtype. Copenhagen: Miljø- og Energiministeriet Skov- og Naturstyrelsen & Gads Forlag.

    Google Scholar 

  • Wang, L., M. Ye, Q. Li, H. Zou, and Y. Zhou. 2013. Phosphorus speciation in wetland sediments of Zhujiang (Pearl) River Estuary, China. Chinese Geographical Science 23 (5): 574–583.

    Article  Google Scholar 

  • Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York: Springer.

    Book  Google Scholar 

  • Zedler, J.B. 2004. Compensating for wetland losses in the United States. Ibis 146: 92–100.

    Article  Google Scholar 

  • Zhang, W., C. Zeng, C. Tong, S. Zhai, X. Lin, and D. Gao. 2015. Spatial distribution of phosphorus speciation in marsh sediments along a hydrologic gradient in a subtropical estuarine wetland, China. Estuarine, Coastal and Shelf Science 154: 30–38.

    Article  CAS  Google Scholar 

  • Zhao, Y., Q. Feng, H. Xi, H. Li, H. Yang, and R.C. Deo. 2017. Association between plant species diversity and edaphic factors in the lower reaches of the Heihe River, northwestern China. Chemistry and Ecology 33 (3): 181–195.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Niels Dahlin and his employees from Aage V. Jensen Naturfond for the support in the field. We would also like to thank Helle Blendstrup, Rasmus S. Nielsen, and Lotte Trillingsgaard for their help with the laboratory analyses. Further, we would like to thank associate editor R. Scott Warren and five anonymous reviewers for their time and valuable comments that helped improve this manuscript.

Funding

The work was funded by the Aage V. Jensens Naturfond (AVJNF), project title (in Danish): ‘Udvikling af en forvaltningsstrategi, der tilgodeser hele økosystemet i De Østlige Vejler’ (Developing a management strategy accommodating the entire ecosystem of ‘De Østlige Vejler’).

Author information

Authors and Affiliations

Authors

Contributions

LHA, DB, CP, SB, and KT conceived the ideas for the study. LHA, DB, ASKS, JSK, and TBS planned the field and laboratory work. JSK, TBS, and LHA conducted the fieldwork under the guidance of DB. JSK and TBS assisted with the laboratory work. LHA and ASKS gathered data from DEPA. LHA conducted the data analyses and wrote a first draft of the manuscript under the supervision of DB. CP assisted and advised on the statistical analyses. All authors commented on the results and manuscript.

Corresponding author

Correspondence to Line Holm Andersen.

Additional information

Communicated by R. Scott Warren

Supplementary Information

ESM 1

(DOCX 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, L.H., Knudsen, J.S., Sørensen, T.B. et al. Coastal Meadow Vegetation Following a Century of Shielding Behind a Dike. Estuaries and Coasts 44, 2087–2099 (2021). https://doi.org/10.1007/s12237-021-00923-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-021-00923-4

Keywords

Navigation