Skip to main content
Log in

Block boundary value methods for linear weakly singular Volterra integro-differential equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A class of block boundary value methods (BBVMs) is constructed for linear weakly singular Volterra integro-differential equations (VIDEs). The convergence and stability of these methods is analysed. It is shown that optimal convergence rates can be obtained by using special graded meshes. Numerical examples are given to illustrate the sharpness of our theoretical results and the computational effectiveness of the methods. Moreover, a numerical comparison with piecewise polynomial collocation methods for VIDEs is given, which shows that the BBVMs are comparable in numerical precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brugnano, L.: Essentially symplectic boundary value methods for linear Hamiltonian systems. J. Comput. Math. 15(3), 233–252 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Brugnano, L., Trigiante, D.: High-order multistep methods for boundary value problems. Appl. Numer. Math. 18(1–3), 79–94 (1995)

    Article  MathSciNet  Google Scholar 

  3. Brugnano, L., Trigiante, D.: Convergence and stability of boundary value methods for ordinary differential equations. J. Comput. Appl. Math. 66(1–2), 97–109 (1996)

    Article  MathSciNet  Google Scholar 

  4. Brugnano, L., Trigiante, D.: Block boundary value methods for linear Hamiltonian systems. Appl. Math. Comput. 81(1), 49–68 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Brugnano, L., Trigiante, D.: Boundary value methods: the third way between linear multistep and Runge-Kutta methods. Comput. Math. Appl. 36(10–12), 269–284 (1998)

    Article  MathSciNet  Google Scholar 

  6. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods, volume 6 of Stability and Control: Theory, Methods and Applications. Gordon and Breach Science Publishers, Amsterdam (1998)

  7. Brunner, H., Pedas, A., Vainikko, G.: A spline collocation method for linear Volterra integro-differential equations with weakly singular kernels. BIT 41(5, suppl.), 891–900 (2001). BIT 40th Anniversary Meeting

  8. Brunner, H.: Nonpolynomial spline collocation for Volterra equations with weakly singular kernels. SIAM J. Numer. Anal. 20(6), 1106–1119 (1983)

    Article  MathSciNet  Google Scholar 

  9. Brunner, H.: Polynomial spline collocation methods for Volterra integrodifferential equations with weakly singular kernels. IMA J. Numer. Anal. 6(2), 221–239 (1986)

    Article  MathSciNet  Google Scholar 

  10. Brunner, H.: Collocation methods for Volterra integral and related functional differential equations, volume 15 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2004)

  11. Brunner, H., Pedas, A., Vainikko, G.: Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 39(3), 957–982 (2001)

    Article  MathSciNet  Google Scholar 

  12. Chen, H., Zhang, C.: Boundary value methods for Volterra integral and integro-differential equations. Appl. Math. Comput. 218(6), 2619–2630 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Chen, H., Zhang, C.: Block boundary value methods for solving Volterra integral and integro-differential equations. J. Comput. Appl. Math. 236(11), 2822–2837 (2012)

    Article  MathSciNet  Google Scholar 

  14. Chen, H., Zhang, C.: Convergence and stability of extended block boundary value methods for Volterra delay integro-differential equations. Appl. Numer. Math. 62(2), 141–154 (2012)

    Article  MathSciNet  Google Scholar 

  15. Diethelm, K., Garrappa, R., Stynes, M.: Good (and not so good) practices in computational methods for fractional calculus. Mathematics 8(324), (2020)

  16. Ghiat, M., Guebbai, H.: Analytical and numerical study for an integro-differential nonlinear Volterra equation with weakly singular kernel. Comput. Appl. Math. 37(4), 4661–4674 (2018)

    Article  MathSciNet  Google Scholar 

  17. Iavernaro, F., Mazzia, F.: Block-boundary value methods for the solution of ordinary differential equations. SIAM J. Sci. Comput. 21(1), 323–339 (1999)

    Article  MathSciNet  Google Scholar 

  18. Kangro, R., Parts, I.: Superconvergence in the maximum norm of a class of piecewise polynomial collocation methods for solving linear weakly singular Volterra integro-differential equations. J. Integ. Equ. Appl. 15(4), 403–427 (2003)

    Article  MathSciNet  Google Scholar 

  19. Parts, I.: Optimality of theoretical error estimates for spline collocation methods for linear weakly singular Volterra integro-differential equations. Proc. Estonian Acad. Sci. Phys. Math. 54(3), 162–180 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Tang, T.: A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 13(1), 93–99 (1993)

    Article  MathSciNet  Google Scholar 

  21. Vainikko, G.: Multidimensional Weakly Singular Integral Equations. Lecture Notes in Math. 1549. Springer, Berlin, Heidelberg, New York (1993)

  22. Xu, X., Xu, D.: A semi-discrete scheme for solving fourth-order partial integro-differential equation with a weakly singular kernel using Legendre wavelets method. Comput. Appl. Math. 37(4), 4145–4168 (2018)

    Article  MathSciNet  Google Scholar 

  23. Zhou, Y., Zhang, C.: Convergence and stability of block boundary value methods applied to nonlinear fractional differential equations with Caputo derivatives. Appl. Numer. Math. 135, 367–380 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stynes.

Additional information

Communicated by Mechthild Thalhamme.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Martin Stynes is supported in part by the National Natural Science Foundation of China under grant NSAF-U1930402.

Piecewise polynomial collocation methods

Piecewise polynomial collocation methods

We give a brief review of piecewise polynomial collocation methods in this appendix. Introducing a new unknown function \(x=y'\), the VIDE (1.1) can be rewritten as

$$\begin{aligned} x(t)&= b(t) + y_0 a(t) + y_0 \int _0^t K(t,v)dv + a(t) \int _0^t x(v)dv \\&\quad + \int _0^t K(t,v) \int _0^v x(\tau ) d\tau dv,~~t \in [0,T]. \end{aligned}$$

Using the same mesh as before, with the same notation, we write \(x_{n,i}\) for the computed approximation of \(x(t_{n,i})\) for \(0 \le i \le m\) and \(1\le n \le N\). This is defined by

$$\begin{aligned} x_{n,i}&= b(t_{n,i}) + y_0 a(t_{n,i}) + y_0 \int _0^{t_{n,i}} K(t_{n,i},v)dv \\&\qquad + a(t_{n,i}) \sum _{j=1}^{n-1} \int _{t_{j-1}}^{t_{j}} \hat{P}_{m,j}(v)dv + a(t_{n,i}) \int _{t_{n-1}}^{t_{n,i}} \hat{P}_{m,n}(v)dv \\&\qquad + \sum _{j=1}^{n-1} h_j \int _{0}^{m} K(t_{n,i},t_{j,\theta }) \left[ \sum _{q=1}^{j-1} \int _{t_{q-1}}^{t_{q}} \hat{P}_{m,q}(\tau )d\tau + \int _{t_{j-1}}^{t_{j,\theta }} \hat{P}_{m,j}(\tau ) d\tau \right] d\theta \\&\qquad + h_n \int _{0}^{i} K(t_{n,i},t_{n,\theta }) \left[ \sum _{q=1}^{n-1} \int _{t_{q-1}}^{t_{q}} \hat{P}_{m,q}(\tau )d\tau + \int _{t_{n-1}}^{t_{n,\theta }} \hat{P}_{m,n}(\tau ) d\tau \right] d\theta \\&= b(t_{n,i}) + y_0 a(t_{n,i}) + y_0 \int _0^{t_{n,i}} K(t_{n,i},v)dv \\&\qquad + a(t_{n,i}) \sum _{j=1}^{n-1} \sum _{s=0}^m \int _{t_{j-1}}^{t_{j}} L_{m,j,s}(v) x_{j,s} dv + a(t_{n,i}) \sum _{s=0}^m \int _{t_{n-1}}^{t_{n,i}} L_{m,n,s}(v) x_{n,s}dv \\&\qquad + \sum _{j=1}^{n-1} h_j \int _{0}^{m} K(t_{n,i},t_{j,\theta }) \left[ \sum _{q=1}^{j-1} \sum _{s=0}^m \int _{t_{q-1}}^{t_{q}} L_{m,q,s}(\tau ) x_{q,s} d\tau + \sum _{s=0}^m \int _{t_{j-1}}^{t_{j,\theta }} L_{m,j,s}(\tau ) x_{j,s} d\tau \right] d\theta \\&\qquad + h_n \int _{0}^{i} K(t_{n,i},t_{n,\theta }) \left[ \sum _{q=1}^{n-1} \sum _{s=0}^m \int _{t_{q-1}}^{t_{q}} L_{m,q,s}(\tau ) x_{q,s} d\tau + \sum _{s=0}^m \int _{t_{n-1}}^{t_{n,\theta }} L_{m,n,s}(\tau ) x_{n,s} d\tau \right] d\theta . \end{aligned}$$

In the above formulas,

$$\begin{aligned} \hat{P}_{m,j}(t) = \sum _{s=0}^m L_{m,j,s}(t)x_{j,s},~~~\text{ where }~L_{m,j,s}(t) = \prod _{l=0,l \ne s}^m \frac{t-t_{j,l}}{t_{j,s}-t_{j,l}}. \end{aligned}$$

From the above equation, for each \(n\ge 1\) one can obtain the unknown vector \(X_n = \left( x_{n,1}^T,x_{n,2}^T,\ldots ,x_{n,m}^T\right) ^T\). Then the approximation y is computed iteratively by

$$\begin{aligned} y(t_{n,i}) = y_0 + \int _0^{t_{n,i}} x(v) dv = \sum _{j=1}^{n-1} \sum _{s=0}^m \int _{t_{j-1}}^{t_j} L_{m,j,s}(v)x_{j,s} dv + \sum _{s=0}^m \int _{t_{n-1}}^{t_{n,i}} L_{m,n,s}(v)x_{n,s} dv. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Stynes, M. Block boundary value methods for linear weakly singular Volterra integro-differential equations. Bit Numer Math 61, 691–720 (2021). https://doi.org/10.1007/s10543-020-00840-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-020-00840-1

Keywords

Mathematics Subject Classification

Navigation