Skip to main content
Log in

Restoration of the Parameters of a Gas-Dust Disk Based on Its Synthetic Images

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract—

The topic of the present study is combining a dynamic model of a protoplanetary disk with the computations of radiation transfer for obtaining synthetic spectra and disk images suitable for immediate comparison of the model with observations. Evolution of the disk was computed using the FEOSAD hydrodynamic model, which includes a self-consistent calculation of the dynamics of dust and gas in the 2D thin disk approximation. Radiation transfer was simulated by the open code RADMC-3D. Three phases of disk evolution were considered: a young gravitationally unstable disk, a disk during an accretion luminosity burst, and an evolved disk. For these stages, the influence of various processes upon the disk’s thermal structure was analyzed, as well as the differences between the temperatures obtained in the initial dynamic model and in the model with a detailed calculation of the radiation transfer. It is shown that viscous heating in the inner regions and adiabatic heating in the disk spirals can be important sources of heating. On the basis of the calculated spectral energy distributions, using SED-fitter software package used for the observations, physical parameters of the model disks were reconstructed. A significant spread between reconstructed parameters and initial characteristics of the disk indicates verification necessity of the models within the framework of spatially resolved observations of disks in the different spectral ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d

REFERENCES

  1. J. B. Pollack, O. Hubickyj, P. Bodenheimer, J. J. Lissauer, M. Podolak, and Y. Greenzweig, Icarus 124, 62 (1996).

    Article  ADS  Google Scholar 

  2. A. P. Boss, Astrophys. J. 599, 577 (2003).

    Article  ADS  Google Scholar 

  3. E. I. Vorobyov, Astron. Astrophys. 552, A129 (2013); arXiv: 1302.1892 [astro-ph.EP].

    Article  ADS  Google Scholar 

  4. S. Nayakshin, Mon. Not. R. Astron. Soc. 408, L36 (2010); arXiv: 1007.4159 [astro-ph.EP].

    Article  ADS  Google Scholar 

  5. A. C. Boley, T. Hayfield, L. Mayer, and R. H. Durisen, Icarus 207, 509 (2010); arXiv: 0909.4543 [astro-ph.EP].

    Article  ADS  Google Scholar 

  6. J. P. Williams and L. A. Cieza, Ann. Rev. Astron. Astrophys. 49, 67 (2011); arXiv: 1103.0556 [astro-ph.GA].

  7. J. R. Najita, S. E. Strom, and J. Muzerolle, Mon. Not. R. Astron. Soc. 378, 369 (2007); arXiv: 0704.1681 [astro-ph].

    Article  ADS  Google Scholar 

  8. L. A. Cieza, M. R. Schreiber, G. A. Romero, M. D. Mora, et al., Astrophys. J. 712, 925 (2010); arXiv: 1001.4825 [astro-ph.GA].

    Article  ADS  Google Scholar 

  9. C. J. Lada, in Star Forming Regions, Ed. by M. Peimbert and J. Jugaku, IAU Symp. 115, 1 (1987).

  10. S. V. W. Beckwith, A. I. Sargent, R. S. Chini, and R. Guesten, Astron. J. 99, 924 (1990).

    Article  ADS  Google Scholar 

  11. E. I. Chiang and P. Goldreich, Astrophys. J. 490, 368 (1997); arXiv: astro-ph/9706042.

    Article  ADS  Google Scholar 

  12. P. Woitke, in Proceedings of the Summer School on Protoplanetary Disks: Theory and Modeling Meet Observations, Ed. by I. Kamp, P. Woitke, and J. D. Ilee, EPJ Web of Conf. 102, 00007 (2015).

  13. C. R. O’Dell and Z. Wen, Astrophys. J. 436, 194 (1994).

    Article  ADS  Google Scholar 

  14. H. Avenhaus, S. P. Quanz, A. Garufi, S. Pérez, et al., Astrophys. J. 863, 44 (2018); arXiv: 1803.10882 [astro-ph.SR].

  15. A. Dutrey, S. Guilloteau, G. Duvert, L. Prato, M. Simon, K. Schuster, and F. Menard, Astron. Astrophys. 309, 493 (1996).

    ADS  Google Scholar 

  16. S. M. Andrews, J. Huang, L. M. Pérez, A. Isella, et al., Astrophys. J. Lett. 869, L41 (2018); arXiv: 1812.04040 [astro-ph.SR].

  17. M. Flock, J. P. Ruge, N. Dzyurkevich, T. Henning, H. Klahr, and S. Wolf, Astron. Astrophys. 574, A68 (2015); arXiv: 1411.2736 [astro-ph.EP].

    Article  ADS  Google Scholar 

  18. R. Dong, Z. Zhu, and B. Whitney, Astrophys. J. 809, 93 (2015); arXiv: 1411.6063 [astro-ph.EP].

    Article  ADS  Google Scholar 

  19. P. Woitke, I. Kamp, S. Antonellini, F. Anthonioz, et al., Publ. Astron. Soc. Pacif. 131, 064301 (2019); arXiv: 1812.02741 [astro-ph.EP].

  20. E. I. Vorobyov, V. Akimkin, O. Stoyanovskaya, Y. Pav-lyuchenkov, and H. B. Liu, Astron. Astrophys. 614, A98 (2018); arXiv: 1801.06898 [astro-ph.EP].

  21. E. I. Vorobyov and S. Basu, Astrophys. J. 650, 956 (2006); arXiv: astro-ph/0607118.

    Article  ADS  Google Scholar 

  22. E. I. Vorobyov and V. G. Elbakyan, Astron. Astrophys. 631, A1 (2019); arXiv: 1908.10589 [astro-ph.SR].

  23. E. I. Vorobyov, A. M. Skliarevskii, V. G. Elbakyan, Y. Pavlyuchenkov, V. Akimkin, and M. Guedel, Astron. Astrophys. 627, A154 (2019); arXiv: 1905.11335 [astro-ph.EP].

  24. V. G. Elbakyan, A. Johansen, M. Lambrechts, V. Akimkin, and E. I. Vorobyov, Astron. Astrophys. 637, A5 (2020); arXiv: 2004.00126 [astro-ph.EP].

  25. G. Lodato, New Astron. Rev. 52, 21 (2008).

    Article  ADS  Google Scholar 

  26. E. I. Vorobyov and Y. N. Pavlyuchenkov, Astron. Astrophys. 606, A5 (2017); arXiv: 1706.00401 [astro-ph.GA].

  27. K. Kornet, T. F. Stepinski, and M. Różyczka, Astron. Astrophys. 378, 180 (2001).

    Article  ADS  Google Scholar 

  28. D. Semenov, T. Henning, C. Helling, M. Ilgner, and E. Sedlmayr, Astron. Astrophys. 410, 611 (2003); arXiv: astro-ph/0308344.

    Article  ADS  Google Scholar 

  29. R. Dong, E. Vorobyov, Y. Pavlyuchenkov, E. Chiang, and H. B. Liu, Astrophys. J. 823, 141 (2016); arXiv: 1603.01618 [astro-ph.SR].

  30. S. M. Andrews, K. A. Rosenfeld, A. L. Kraus, and D. J. Wilner, Astrophys. J. 771, 129 (2013); arXiv: 1305.5262 [astro-ph.SR].

    Article  ADS  Google Scholar 

  31. T. P. Robitaille, B. A. Whitney, R. Indebetouw, and K. Wood, Astrophys. J. Suppl. 169, 328 (2007); arXiv: astro-ph/0612690.

    Article  Google Scholar 

  32. D. An, S. V. Ramírez, K. Sellgren, R. G. Arendt, et al., Astrophys. J. 736, 133 (2011); arXiv: 1104.4788 [astro-ph.GA].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Skliarevskii.

Ethics declarations

This study was supported by Russian Foundation for Basic Research (contract No. 19-32-50146). E.V. acknowledges support by the Ministry of Science and Higher Education of Russian Federation (state science assignment to Southern Federal University VnGr /2020-03-IF, 2020).

Additional information

Translated by L. Yungelson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skliarevskii, A.M., Pavlyuchenkov, Y.N. & Vorobyov, E.I. Restoration of the Parameters of a Gas-Dust Disk Based on Its Synthetic Images. Astron. Rep. 65, 170–183 (2021). https://doi.org/10.1134/S1063772921030045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921030045

Navigation