Skip to main content
Log in

Phase transformations in the nitrided layer during annealing under reduced pressure

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The article presents studies of phase transformations taking place in surface layers of nitrided steels as a result of their annealing at 520 °C for 5 and 10 h. Two steel grades were tested, the unalloyed AISI 1085 and the low-alloy AISI 52100. As a result of glow discharge nitriding, at 570 °C/5 h and 540 °C/12 h, respectively, nitrided layers were produced on the steels, consisting of a surface layer of iron nitrides with the structure of ε + γ′ and γ′ and of similar thickness 25. The study showed that during 5 h of annealing at 520 °C, the iron nitride layer already decomposed, which was documented by the analysis of chemical composition and X-ray analysis of the surface layers of steel. Comparative studies on the hardness distribution of surface layers of nitrided as well as nitrided and subsequently annealed AISI 52100 steels showed that after both 5 and 10 h of annealing, the hardness depth profiles were very similar and the effective thickness of the diffusion layer did not change. The results obtained enabled the demonstration that the emission of nitrogen into the atmosphere during annealing of nitrided steels is not accompanied by diffusion of nitrogen into the base layer. This proves that the iron nitride layer is not a source of nitrogen for the diffusion layer during annealing at reduced pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lehrer E. Über das Eisen—Wasserstoff—Ammoniak Gleichgewicht. Zeitschrift Für Elektrochemie. 1930;36:383–93.

    CAS  Google Scholar 

  2. Somers MAJ. IFHTSE global 21: heat treatment and surface engineering in the twenty-first century: part 14—development of compound layer during nitriding and nitrocarburising; current understanding and future challenges. Int Heat Treat Surf Eng. 2011;5:7–16. https://doi.org/10.1179/174951411X12956207253429.

    Article  Google Scholar 

  3. Michalski J, Tacikowski J, Wach P, Lunarska E, Baum H. Formation of single-phase layer of γ′-nitride in controlled gas nitriding. Met Sci Heat Treat. 2005;47:516–9. https://doi.org/10.1007/s11041-006-0023-0.

    Article  ADS  CAS  Google Scholar 

  4. Małdziński L. Termodynamiczne, kinetyczne i technologiczne aspekty wytwarzania warstwy azotowanej na żelazie i stalach w procesach azotowania gazowego, nr 373. Poznań: Wydawnictwo Politechniki Poznańskiej; 2002.

    Google Scholar 

  5. Arabczyk W, Pelka R, Wilk B. Studies of phase transitions occurring in the system of nanocrystalline Fe/NH3/H2. Mater Chem Phys. 2019. https://doi.org/10.1016/j.matchemphys.2019.121853.

    Article  Google Scholar 

  6. Moszynska I, Moszynski D, Arabczyk W. Hysteresis in nitriding and reduction in the nanocrystalline iron-ammonia-hydrogen system. Przem Chem. 2009;88:526–9.

    CAS  Google Scholar 

  7. Malinov S, Böttger AJ, Mittemeijer EJ, Pekelharing MI, Somers MAJ. Phase transformations and phase equilibria in the Fe-N system at temperatures below 573 K. Metall Mater Trans A. 2001;32:59–73. https://doi.org/10.1007/s11661-001-0102-1.

    Article  Google Scholar 

  8. Liapina T. Phase transformations in interstitial Fe-N alloys. Stuttgart: Universiitet Stuttgart; 2005.

    Google Scholar 

  9. Mittemeijer EJ, Somers MAJ. Thermodynamics, kinetics, and process control of nitriding. Surf Eng. 1997;13:483–97. https://doi.org/10.1179/sur.1997.13.6.483.

    Article  CAS  Google Scholar 

  10. Liapina T, Leineweber A, Mittemeijer EJ. Phase transformations in ε-/γ′-iron nitride compound layers in the temperature range of 613 K–693 K. Defect Diffus Forum. 2005;237–240:1147–52. https://doi.org/10.4028/www.scientific.net/DDF.237-240.1147.

    Article  Google Scholar 

  11. Liapina T, Leineweber A, Mittemeijer EJ. Nitrogen redistribution in ε/γ′-iron nitride compound layers upon annealing. Scr Mater. 2003;48:1643–8. https://doi.org/10.1016/S1359-6462(03)00136-2.

    Article  CAS  Google Scholar 

  12. Yurovskikh AS, Kardonina NI, Kolpakov AS. Phase transformations in nitrided iron powders. Met Sci Heat Treat. 2015;57:507–14. https://doi.org/10.1007/s11041-015-9913-3.

    Article  ADS  CAS  Google Scholar 

  13. Ratajski J. Wybrane aspekty współczesnego azotowania gazowego pod kątem sterowania procesem. Koszalin: Politechnika Koszalińska, Monografia Wydziału Mechanicznego; 2003.

    Google Scholar 

  14. Michalski J, Tacikowski J. Termodynamiczne i kinetyczne aspekty regulowanego azotowania gazowego. Inżynieria Powierzchni. 2019;24:3–10. https://doi.org/10.5604/01.3001.0013.1487.

    Article  CAS  Google Scholar 

  15. Maldzinski L, Tacikowski J. ZeroFlow gas nitriding of steels. In: Mittemeijer EJ, Somers MAJ (eds) Thermochemical surface engineering of steels. Elsevier; 2015. pp. 459–483. https://doi.org/10.1533/9780857096524.3.459.

  16. Kowalska J, Małdziński L. ZeroFlow—new, environmentally friendly method of controlled gas nitriding used for selected car parts. IOP Conf Ser Mater Sci Eng. 2016;148:012047. https://doi.org/10.1088/1757-899X/148/1/012047.

    Article  Google Scholar 

  17. Wołowiec-Stańczyk E. Komputerowe projektowanie procesów obróbki cieplnej, Zesz Nauk Politech Łódzkiej. 2013;1163.

  18. Wołowiec-Korecka E, Kula P, Pawęta S, Pietrasik R, Sawicki J, Rzepkowski A. Neural computing for a low-frictional coatings manufacturing of aircraft engines’ piston rings. Neural Comput Appl. 2019;31:4891–901. https://doi.org/10.1007/s00521-018-03987-9.

    Article  Google Scholar 

  19. Kula P, Wolowiec E, Pietrasik R, Dybowski K, Januszewicz B. Non-steady state approach to the vacuum nitriding for tools. Vacuum. 2013;88:1–7. https://doi.org/10.1016/j.vacuum.2012.08.001.

    Article  ADS  CAS  Google Scholar 

  20. Betiuk M, Michalski J, Tacikowski J, Łataś Z. Pomiary grubości warstw azotków żelaza. Inżynieria Powierzchni. 2014;2:60–5.

    Google Scholar 

Download references

Acknowledgements

The work was supported by Ministry of Science and Higher Education of Poland, within statutory research No. BS/PB-200-301/2020/ZB-202/5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzena Ogórek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frączek, T., Michalski, J., Kucharska, B. et al. Phase transformations in the nitrided layer during annealing under reduced pressure. Archiv.Civ.Mech.Eng 21, 48 (2021). https://doi.org/10.1007/s43452-020-00158-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00158-3

Navigation