Skip to main content
Log in

Influence of dietary acetic acid, protexin (probiotic), and their combination on growth performance, intestinal microbiota, digestive enzymes, immunological parameters, and fatty acids composition in Siberian sturgeon (Acipenser baerii, Brandt, 1869)

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

This study was performed to investigate the effects of dietary acetic acid, probiotic protexin, and their combination on growth performance, intestinal microbiota, digestive enzymes, immune responses, and fatty acids composition in Siberian sturgeon. A total of 120 healthy fish with an average body weight of 54.85 ± 0.36 g were randomly divided into 4 experimental groups of 3 replicates. Fish were fed with four experimental diets as follows: control diet (diet 1), and control diet supplemented with 2% acetic acid (diet 2), 0.01% protexin (diet 3), and the combination of 2% acetic acid and 0.01% protexin (diet 4). Fish were hand-fed to apparent satiation three times a day (8:00, 15:00, and 21:00) for 62 days. Our results indicated that fish received diets 2 and 4 showed the highest final body weight, weight gain, and specific growth rate (P < 0.05). The feed conversion ratio was significantly lower in the group fed on diet 4 than the other groups (P < 0.05). Administration of diet 4 significantly decreased pH of the gut, while increased gut total viable and lactic acid bacteria, and enhanced chymotrypsin, trypsin, lipase, and amylase activity compared to other diets (P ˂ 0.05). Fish in the group received diet 2 demonstrated significantly higher activities of lysozyme and alternative complement compared with other experimental groups (P < 0.05). Administration of diets 2 and 4 significantly modified muscle n-3/n-6 and docosahexaenoic acid/eicosapentaenoic acid ratios (P < 0.05). This study indicated that incorporating diet with acetic acid, alone or supplemented with protexin, had promising results as functional feed additives in A. baerii, and can be taken in account as fish diet supplementation for its growth stimulants effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  • Abdel-Latif HMR, Abdel-Tawwab M, Dawood MAO, Menanteau-Ledouble S, El-Matbouli M (2020) Benefits of Dietary Butyric Acid, Sodium Butyrate, and Their Protected Forms in Aquafeeds: A Review. Reviews in Fisheries Science & Aquaculture 28 (4):421–448

  • Abdel-Tawwab M, Adeshina I, Jenyo-Oni A, Ajani EK, Emikp BO (2018) Growth, physiological, antioxidants, and immune response of African catfish, Clarias gariepinus (B.), to dietary clove basil, Ocimum gratissimum, leaf extract and its susceptibility to Listeria monocytogenes infection. Fish Shellfish Immunol 78:346–354

    Article  CAS  PubMed  Google Scholar 

  • Abu Elala NM, Ragaa NM (2015) Eubiotic effect of a dietary acidifier (potassium diformate) on the health status of cultured Oreochromis niloticus. Adv Res 6:621–629

    Article  CAS  Google Scholar 

  • Adorian TJ, Jamali H, Farsani HG (2019) Effects of probiotic Bacteria Bacillus on growth performance, digestive enzyme activity, and hematological parameters of Asian Sea bass, Lates calcarifer (Bloch). Probiotics Antimicro Prot 11:248–255. https://doi.org/10.1007/s12602-018-9393-z

    Article  CAS  Google Scholar 

  • Ahmed HA, Sadek KM (2014) Impact of dietary supplementation of sodium butyrate and/or protexin on the growth performance, some blood parameters, and immune response of Oreochromis Niloticus. Int J Agric Res 3:985–991

    Google Scholar 

  • Akhter N, Wu B, Memon AM, Mohsin M (2015a) Probiotics and prebiotics associated with aquaculture: a review. Fish Shellfish Immunol 45:733–741. https://doi.org/10.1016/j.fsi.2015.05.038

  • Akhter N, Wu B, Memon AM, Mohsin M (2015b) Probiotics and prebiotics associated with aquaculture. A Review Fish Shellfish Immunol 45(2):733–741. https://doi.org/10.1016/j.fsi.2015.05.038

    Article  CAS  PubMed  Google Scholar 

  • Al-Harbi AH, Uddin MN (2004) Seasonal variation in the intestinal bacterial flora of hybrid tilapia (Oreochromis niloticus × Oreochromis aureus) cultured in earthen ponds in Saudi Arabia. Aquaculture 229:37–44

    Article  Google Scholar 

  • Alishahi M, Tulaby Dezfuly Z, Mohammadian T, Mesbah M (2018) Effects of two probiotics, Lactobacillus plantarum and Lactobacillus bulgaricus on growth performance and intestinal lactic acid bacteria of Cyprinus Carpio. Iran J Vet Med 12:207–218

    Google Scholar 

  • Alizade H, OurajiH FB, Efatpanah I (2018) Effect of dietary malic acid on growth performance and body composition of juvenile Siberian sturgeon (Acipenser baerii Brandt, 1869). Journal Iranian Scientific Fisheries Journal 27:1–12

    Google Scholar 

  • Andani H, Tukmechi A, Meshkini S, Sheikhzadeh N (2012) Antagonistic activity of two potential probiotic bacteria from fish intestines and investigation of their effects on growth performance and immune response in rainbow trout (Oncorhynchus mykiss). Appl Ichthyol 28:728–734

    Article  Google Scholar 

  • Anson ML (1938) Estimation of pepsin, papain and cathepsin with hemoglobin. Gen Physiol 22:79–89

    Article  CAS  Google Scholar 

  • AOAC (1995) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, AOAC International, Arlington

    Google Scholar 

  • Arllano CF, Olmos SJ (2002) Thermostable alpha-1,4- and alpha-1,6-glucosidase enzymes from Bacillus sp. isolated from a marine environment. World J Microbiol Biotechnol 18:791–795

    Article  Google Scholar 

  • Asadian M, Shahsavani D, Kazerani HR (2015) Growth promoting effects of a multi-strain probiotic on common carp (Cyprinus carpio) fingerlings. Iran J Vet Sci Technol 7:63–74

    Google Scholar 

  • Ashouri G, Soofiani NM, Hoseinifar SH, Jalali SAH, Morshedie V, Valinassab T, Bagheri D, Doanh HV, Mozanzadeh MT (2018) Combined effects of dietary low molecular weight sodium alginate and Pediococcus acidilactici on growth performance, haematological and innate immune responses of Asian sea bass (Lates calcalifer) juveniles. Fish Shellfish Immunol 79:34–41. https://doi.org/10.1016/j.fsi.2018.05.009

    Article  CAS  PubMed  Google Scholar 

  • Ashouri G, Soofiani NM, Hoseinifar SH, Jalali SAH, Morshedie V, Valinassab T, Bagheri D, Doanh HV, Mozanzadeh MT, Carnevali O (2020) Influence of dietary sodium alginate and Pediococcus acidilactici on liver antioxidant status, intestinal lysozyme gene expression, histomorphology, microbiota, and digestive enzymes activity, in Asian sea bass (Lates calcarifer) juveniles. Aquaculture 518:734638. https://doi.org/10.1016/j.aquaculture.2019.734638

    Article  CAS  Google Scholar 

  • Azarin H, Aramli MS, Imanpour MR, Rajabpour M (2015) Effect of a probiotic containing Bacillus licheniformis and Bacillus subtilis and ferroin solution on growth performance, body composition and haematological parameters in kutum (Rutilus frisii kutum) fry. Probiotics Antimicrob Proteins 7:31–37

    Article  CAS  PubMed  Google Scholar 

  • Back SY, Jin HH, Lee SY (2009) Inhibitory effect of organic acids against Enterobacter sakazakii in laboratory media and liquid foods. Food Control 20:867–872

    Article  CAS  Google Scholar 

  • Baesi F, Aberoumand A, Ziaei Nejad S, Javaheri Baboli M (2017a) Effect of commercial probiotic Lactobacillus on fatty acids profile and nutritional value of cyprinus carpio in Iran. Carpath J Food Sci Technol 9(4):189–196

    CAS  Google Scholar 

  • Baesi F, Aberoumand A, Ziaei Nejad S, Javaheri Baboli M (2017b) Effect of commercial probiotic Lactobacillus on fatty acids profile and nutritional value of Cyprinus carpio in Iran. Carpathian Journal of Food Science and Technology 9:189–196

    CAS  Google Scholar 

  • Bagheri T, Hedayati S, Yavari V, Alizade M, Farzanfar A (2008) Growth, survival and gut microbial load of rainbow trout (Onchorhynchus mykiss) fry given diet supplemented with probiotic during the two months of first feeding. Turk J Fish Aquat Sci 8:43–48

    Google Scholar 

  • Bairagi A, Chosh KS, Sen SK, Ray AK (2002) Enzyme producing bacterial flora isolated from fish digestive tracts. Aquacult Int 10:109–121

    Article  CAS  Google Scholar 

  • Baruah K, Pal AK, Sahu NP, Jain KK, Mukherjee SC, Debnath D (2005) Dietary protein level, microbial phytase, citric acid and their interactions on bone mineralization of Labeo rohita (Hamilton) juveniles. Aquac Res 36:803–812

    Article  CAS  Google Scholar 

  • Bell JG, Dick JR, McVicar AH, Sargent JR, Thompson KD (1993) Dietary sunflower, linseed, and fish oils affect phospholipid fatty acid composition, development of cardiac lesions, phospholipase activity, and eicosanoid production in Atlantic salmon ( Salmo salar ). Prostaglandins Leukot Essent Fatty Acids 49:665–673

    Article  CAS  PubMed  Google Scholar 

  • Berge GM, Witten PE, Baeverfjord G, Vegusdal A, Wadsworth S, Ruyter B (2009) Diets with different n-6/n-3 fatty acid ratio in diets for juvenile Atlantic salmon, effects on growth, body composition, bone development and eicosanoid production. Aquaculture 296:299–308

    Article  CAS  Google Scholar 

  • Booth I, Stratford M (2003) Acidulants and low pH. In: Russel NJ, Gould GW (eds) Food preservatives, 2nd edn. Kluwer Academic Plenum Publishers, New York, pp 25–47

    Chapter  Google Scholar 

  • Calder PC (2008) The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot. Essent Fat Acids 79: 101–108

  • Castillo S, Rosales M, Pohlenz C, Delbert M (2014) Effects of organic acids on growth performance and digestive enzyme activities of juvenile red drum Sciaenops ocellatus. Aquaculture 433:6–12

    Article  CAS  Google Scholar 

  • Chabrillon M, Rico RM, Balebona MC, Morinigo M (2005) Adhesion to sole Soleasenegalensis Kaup, mucus of microorganisms isolated from farmed fish, and their interaction with Photobacterium damselae subsp Piscicida. J Fish Dis 28:229–237

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Sun BL, Li LX, Li PY, Guan WT, Bi YZ, Pan Q (2013) n-3 essential fatty acids in Nile tilapia, Oreochromis niloticus: quantification of dietary linolenic acid requirement. Aquaculture 416–417:99–104

    Article  Google Scholar 

  • Chen C, Sun B, Guan W, Bi Y, Li P, Ma J, Chen F, Pan Q, Xie Q (2016) N-3 essential fatty acids in Nile tilapia, Oreochromis niloticus: effects of linolenic acid on non-specific immunity and anti-inflammatory responses in juvenile fish. Aquaculture 450:250–257. https://doi.org/10.1016/j.aquaculture.2015.08.005

    Article  CAS  Google Scholar 

  • Choi SH, HaPark K, YoonT KJ, Jang Y, Choe C (2008) Dietary Korean mistletoe enhances cellular non-specific immune responses and survival of Japanese eel (Anguilla japonica). Fish Shellfish Immunol 24:67–73. https://doi.org/10.1016/j.fsi.2007.08.007

    Article  CAS  PubMed  Google Scholar 

  • Das S, Mondal K, Haque S (2017) A review on application of probiotic, prebiotic and synbiotic for sustainable development of aquaculture. Entomol Zool Stud 5:422–429

    Google Scholar 

  • Dawood MAO, Magouz FI, Salem MFI, AbdelDaim HA (2019) Modulation of digestive enzyme activity, blood health, oxidative responses and growthrelated gene expression in GIFT by heat-killed Lactobacillus plantarum (L-137). Aquaculture 505:127–136

    Article  CAS  Google Scholar 

  • De Schryver P, Sinha A, Kunwar P, Baruah K, Verstraete W, Boon N, De Boeck G, Bossier P (2009) Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass (Dicentrarchus labrax). Appl Microbiol Biotechnol 86:1535–1541

    Article  Google Scholar 

  • De Wet L (2005) Organic acids as performance enhancers. Aqua Feeds: Formulation and Beyond 2:12–14

    Google Scholar 

  • Dimitroglou A, Merrifield DL, Mote R, Davies SJ, Spring P, Sweetman J, Bradley G (2009) Dietary mannan oligosaccharide supplementation modulates intestinal microbiology ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). Anim Sci 87:3226–3234

    Article  CAS  Google Scholar 

  • El-Dakar AY, Shalaby SM, Saoud IP (2007) Assessing the use of dietary probiotic/prebiotic as an enhancer of spine foot rabbit fish (Singanus rivulatus), survival and growth. Aquaclt Nutr 13:407–412

    Article  Google Scholar 

  • El–Gohary MS, Diab AM (2014) Some studies on the effect of Protexin on immune status of cultured seabass fingerlings. Alex J Vet Sci 41:109–119

    Google Scholar 

  • Ellis AE (1990) Lysozyme assays. In: Stolen JS, Fletcher TC, Anderson DP, Robertsen BS, Van Muiswinkel WB (eds) Techniques in fish immunology. SOS Publications, Fair Haven, NJ, pp 101–103

    Google Scholar 

  • Engstad RE, Robertsen B, Frivold E (1992) Yeast glucan induces increase in activity of lysozyme and complement-mediated hemolytic activity in Atlantic salmon blood. Fish Shellfish Immunol 2:287–297

    Article  Google Scholar 

  • Erlanger BF, Kokowski N, Cohen W (1961) The preparation and properties of two newchromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  CAS  PubMed  Google Scholar 

  • Falcinelli S, Rodiles A, Unniappan S, Picchietti S, Gioacchini G, Merrifield DL, Carnevali O (2016) Probiotic treatment reduces appetite and glucose level in the zebrafish model. Sci Rep 6:1–13

    Article  Google Scholar 

  • Fazio F, Marafioti S, Arfuso F, Piccione G, Faggio C (2013) Influence of different salinity on haematological and biochemical parameters of the widely cultured mullet Mugil cephalus. Mar. Freshwater Behav Physiol 46:211–218

    Article  CAS  Google Scholar 

  • Ferguson RMW, Merrifield DL, Harper GM, Rawling MD, Mustafa S, Picchietti S, Balcázar JL, Davies SJ (2010) The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). Appl Microbiol 109:851–862

    Article  CAS  Google Scholar 

  • Firouzbakhsh F, Noori F, Khalesi MK, Jani-Khalili K (2011) Effects of a probiotic, protexin, on the growth performance and hematological parameters in the Oscar (Astronotus ocellatus) fingerlings. Fish Physiol Biochem 37(4):833–842. https://doi.org/10.1007/s10695-011-9481-4

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zhang M, Li X, Han Y, Wu F, Liu Y (2018) The effects of feeding Lactobacillus pentosus on growth, immunity, and disease resistance in Haliotis discus hannai Ino. Fish Shellfish Immunol 78:42–51

    Article  CAS  PubMed  Google Scholar 

  • Gatesoupe FJ (1994) Lactic acid bacteria increase the resistance of turbot larvae, Scophthalmus maximus, against pathogenic Vibrio. Aquat Living Resour 7:277–282

    Article  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Br J Nutr 125:1401–1412

    Article  CAS  Google Scholar 

  • Gisbert E, Mozanzadeh MT, Kotzamanis Y, Estévez A (2016) Weaning wild flathead grey mullet (Mugil cephalus) fry with diets with different levels of fish meal substitution. Aquaculture 462:92–100

    Article  CAS  Google Scholar 

  • Gislason G, Olsen RE, Ringø E (1994) Lack of growth-stimulating effect of lactate on Atlantic salmon, Salmo salar L. Aquacul Fish Manage 25:861–862

    Google Scholar 

  • Gislason G, Olsen RE, Ringø E (1996) Comparative effects of dietary Na-lactate on Arctic charr, Salvelinus alpinus L., and Atlantic salmon, Salmo salar L. Aquac Res 27:429–435

    Article  Google Scholar 

  • Glencross B, Rutherford N (2011) A determination of the quantitative requirements for docosahexaenoic acid for juvenile barramundi (Lates calcarifer). Aquac Nutr 17:536–548

    Article  Google Scholar 

  • Goosen NJ, Gorgens JF, De Wet LF, Chenia H (2011) Organic acids as potential growth promoters in the South Africa abalone Haliotis midae. Aquaculture 321:245–251

    Article  CAS  Google Scholar 

  • Gorj~ao R, Azevedo-Martins AK, Rodrigues HG, Abdulkader F, Arcisio-Miranda M, Procopio J, Curi R (2009) Comparative effects of DHA and EPA on cell function. Pharmacol Ther 122:56–64

    Article  CAS  Google Scholar 

  • Hai NV (2015) The use of probiotics in aquaculture. Appl Microbiol 119:917–935

    Article  CAS  Google Scholar 

  • Hasan KN, Banerjee G (2020) Recent studies on probiotics as beneficial mediator in aquaculture: a review. J Basic Appl Zool 81:53. https://doi.org/10.1186/s41936-020-00190-y

    Article  Google Scholar 

  • Hassaan MS, Soltan MA, Jarmołowicz S, Abdo HS (2016) Combined effects of dietary malic acid and Bacillus subtilis on growth, gut microbiota and blood parameters of Nile tilapia (Oreochromis niloticus). Aquac Nutr 00:1–11. https://doi.org/10.1111/anu.12536

    Article  CAS  Google Scholar 

  • Hayat M, Nugroho RA, Aryani R (2018) Influence of different stocking density on the growth, feed efficiency, and survival of Majalaya common carp (Cyprinus carpio Linnaeus 1758). F1000Res (7):1917. https://doi.org/10.12688/f1000research.16875.1

  • Hoseinifar SH, Mirvaghefi A, Amoozegar M. A, Merrifield D, Ringø E (2017) In vitro selection of a synbiotic and in vivo evaluation on intestinal microbiota, performance and physiological response of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquac Nutr 23: 111–118

  • Hoseinifar SH, Sun Y, Wang A, Zhou Z (2018) Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front Microbiol 9:2429. https://doi.org/10.3389/fmicb.2018.02429

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Pandey A, Satoh S (2007) Effects of organic acids on growth and phosphorus in red sea bream Pagrus major. Fish Sci 73:1309–1317

    CAS  Google Scholar 

  • Huynh TG, Shiu YL, Nguyen TP, Truong QP, Chen JC, Liu CH (2017) Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: a review. Fish Shellfish Immunol 64:367–382

    Article  CAS  PubMed  Google Scholar 

  • Iijima N, Tanaka S, Ota Y (1998) Purification and characterization of bile salt activated lipase from the hepatopancreas of red seabream, Pagrus major. Fish Physiol Biochem 18:59–69

    Article  CAS  Google Scholar 

  • Jorgensen JB, Lunde H, Robertsen B (1993) Peritoneal and head kidney cell response to intra-peritoneally injected yeast glucan in Atlantic salmon, Salmo salar L. Fish Dis 16:313–325

    Article  Google Scholar 

  • Kalantarian SH, Mirzargar SS, Rahmati-Holasoo H, Sadeghinezha DJ, Mohammadian T (2020) Effects of oral administration of acidifier and probiotic on growth performance, digestive enzymes activities and intestinal histomorphology in Salmo trutta caspius (Kessler, 1877). Iran J fish Sci 19(3):1532–1555. https://doi.org/10.22092/ijfs.119077

    Article  Google Scholar 

  • Khajepour F, Hosseini SA (2012a) Calcium and phosphorus status in juvenile Beluga (Huso huso) fed citric acid-supplemented diets. Aquac Res 43:407–411

    Article  CAS  Google Scholar 

  • Khajepour F, Hosseini SA (2012b) Citric acid improves growth performance and phosphorus digestibility in Beluga (Huso huso) fed diets where soybean meal partly replaced fish meal. Anim Feed Sci Technol 171:68–73

    Article  CAS  Google Scholar 

  • Khattab YE, Shalaby AE, Sharaf SM, El-Marakby H, Rizl Alla EH (2004) The physiological changes and growth performance of the Nile tilapia (Oreochromis niloticus) after feeding with Biogen as growth promoter. Egypt J Aquat Biol Fish 8:145–158

    Google Scholar 

  • Korkea-Aho TL, Papadopoulou A, Heikkinen J, Von Wright A, Adams A, Austin B, Lahtinen S, Ouwehand A (2009) Mechanisms of probiotics. In: Lee Y, Salminen S (eds) Handbook of probiotics and prebiotics, 2nd edn. Wiley, Hoboken, pp 377–440

    Google Scholar 

  • Kuebutornye FKA, DelwinAbarike E, Lu Y (2019) A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol 87:820–828. https://doi.org/10.1016/j.fsi.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Kaller H, Bhaskar N, Bhandary MH, Antony MJ, Raju CV, Biradar VM (1997) Lipid oxidation and subsequent browning in salted-dried mackerel (Rastrelliger kanagurta Cuvier). Indian J Fish 44:377–385

    Google Scholar 

  • Kumar P, Jain KK, Sardar P, Sahu NP, Gupta S (2017) Dietary supplementation of acidifier: effect on growth performance and haemato-biochemical parameters in the diet of Cirrhinus mrigala juvenile. Aquacult Int 25:2101–2116

    Article  CAS  Google Scholar 

  • Lauridsen C, Stagsted J, Jensen SK (2007) N-6 and n-3 fatty acids ratio and vitamin E in porcine maternal diet influence the antioxidant status and immune cell eicosanoid response in the progeny. Prostaglandins Other Lipid Mediat 84(1–2):66–78. https://doi.org/10.1016/j.prostaglandins.2007.04.003

    Article  CAS  PubMed  Google Scholar 

  • Lazado C, Caipang CMA, Brinchmann MF, Kiron V (2011) In vitro adherence of two candidate probiotics from Atlantic cod and their interference with the adhesion of two pathogenic bacteria. Vet Microbiol 148:252–259

    Article  PubMed  Google Scholar 

  • Li JS, Li JL, Wu TT (2009) Effects of non-starch polysaccharides enzyme, phytase and citric acid on activities of endogenous digestive enzymes of tilapia (Oreochromis niloticus × Oreochromis aureus). Aquac Nutr 15:415–420

    Article  CAS  Google Scholar 

  • Lima VMDM, Júnior AFC, Scheidt GN, Silva ECS, Portella ACF (2018) Probiotics in aquaculture review: current status and application in Tambaqui cultivation (Colossoma macropomum). Int j adv res sci eng 5:26–34. https://doi.org/10.22161/ijaers.5.5.4

    Article  Google Scholar 

  • Luckstadt C (2008) The use of acidifiers in fish nutrition. CAB Rev 3:1–8

    Google Scholar 

  • Ma C, Cho Y, Oh KH (2009) Removal of pathogenic bacteria and nitrogens by Lactobacillus spp. JK8 and JK-11. Aquaculture 287:266–270

    Article  CAS  Google Scholar 

  • Macey BM, Coyne VE (2006) Colonization of the gastrointestinal tract of the farmed South African abalone Haliotis midae by the probionts Vibrio midae SY9, Cryptococcus sp. SS1, and Debaryomyces hansemii AY1. Mar Biotechnol 8:246–259

    Article  CAS  Google Scholar 

  • Mahious AS, Gatesoupe FJ, Hervi M, Metailler R, Ollevier F (2006) Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot (Psetta maxima). Aquacult Int 14:219–229

    Article  CAS  Google Scholar 

  • Mahmoudi K, Zamini AA, Yazdsni MA, Kazemi R, Jalilipour J (2012) Effect of protexin probiotic product on some growth parameters and body composition of the cultured Siberian (Acipenser baeri). Fisheries 5:39–48

    Google Scholar 

  • Matani Bour HA, Esmaeili M, Abedian Kenari A (2018) Growth performance, muscle and liver composition, blood traits, digestibility and gut bacteria of beluga (Huso huso) juvenile fed different levels of soybean meal and lactic acid. Aquacult Nutr 24:1361–1368. https://doi.org/10.1111/anu.12673

  • Matsunari H, Hashimoto H, Oda K, Masuda Y, Imaizumi H, Teruya K, Furuita H, Yamamoto T, Hamada K, Mushiake K (2013) Effects of docosahexaenoic acid on growth, survival and swim bladder inflation of larval amberjack (Seriola dumerili, Risso). Aquac Res 44:1696–1705

    CAS  Google Scholar 

  • Merrifield DL, Bradley G, Baker RTM, Davies SJ (2010) Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum). Effects on growth performance, feed utilization, intestinal microbiota and related healthcriteria criteria postantibiotic treatment. Aquacalt Nutr 16:496–503

    Article  CAS  Google Scholar 

  • Merrifield D, Bradley G, Harper G, Baker R, Munn C, Davies S (2011) Assessment of the effects of vegetative and lyophilized Pediococcus acidilacticion on growth, feed utilization, intestinal colonization and health parameters of rainbow trout (Oncorhynchus mykiss, Walbaum). Aquacalt Nutr 17:73–79

    Article  CAS  Google Scholar 

  • Metais P, Bieth J (1968) Détermination de l'α-amylase. Ann Biol Clin 26:133–142

    CAS  Google Scholar 

  • Michael SE, Abarike ED, Cai J (2019) A review on the probiotic effects on haematological parameters in fish. Journal of fisheries Sciences.com 13:25-31

  • Mocherla V, Suiryanrayna AN, Ramana JV (2015) A review of the effects of dietary organic acids fed to swine. J Anim Sci Biotechnol 6:45. https://doi.org/10.1186/s40104-015-0042-z

    Article  CAS  Google Scholar 

  • Motlagh HA, Sarkheil M, Safari O, Paolucci M (2019) Supplementation of dietary apple cider vinegar as an organic acidifier on the growth performance, digestive enzymes and mucosal immunity of green terror (Andinoacara rivulatus). Aquacalt Res 00:1–9. https://doi.org/10.1111/are.14364

    Article  CAS  Google Scholar 

  • Motlagh HA, Javadmanesh A, Safari O (2020) Improvement of non-specific immunity, growth, and activity of digestive enzymes in Carassius auratus as a result of apple cider vinegar administration to diet. Fish Physiol Biochem 46(4):1387–1395. https://doi.org/10.1007/s10695-020-00797-6

    Article  CAS  Google Scholar 

  • Mourente G, Tocher DR, Díaz-Salvago E, Grau A, Pastor E (1999) Study of the n-3 highly unsaturated fatty acids requirement and antioxidant status of Dentex dentex at Artemia feeding stage. Aquaculture 179:291–307.

  • Najdegerami E, Ngoc Tran T, Defoirdt T, Marzorati M, Sorgeloos P, Boon N, Bossier P (2011) Effects of poly-β-hydroxybutyrate (PHB) on Siberian sturgeon (Acipenser baerii) fingerlings performance and its GI tract microbial community. Microbiol ecol 79(2):25–33

    Google Scholar 

  • Najdegerami EH, Baruah K, Shiri A, Rekecki A, Broeck WVD, Sorgeloos P, Boon N, Bossier P, De Schryver P (2013) Siberian sturgeon (Acipenser baerii) larvae fed Artemia nauplii enriched with poly-b-hydroxybutyrate (PHB): effect on growth performance, body composition, digestive enzymes, gut microbial community, gut histology and stress tests. Aquacult res 46(4):801–812. https://doi.org/10.1111/are.122311-12

    Article  Google Scholar 

  • Najdegerami EH, Bakhshi F, Tokmechi A, Shiri Harzevili A, Sorgeloos P, Bossier P (2016) Dietary effects of poly-β-hydroxybutyrate on the growth performance, digestive enzyme activity, body composition, mineral uptake and bacterial challenge of rainbow trout fry (Oncorhynchus mykiss). Aquac Nutr 23:246–254. https://doi.org/10.1111/anu.12386

    Article  CAS  Google Scholar 

  • Nath S, Matozzo V, Bhandari D, Faggio C (2019) Growth and liver histology of Channa punctatus exposed to a common biofertilizer. Nat Prod Res 33:1591–1598

    Article  CAS  PubMed  Google Scholar 

  • Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14

    Article  CAS  PubMed  Google Scholar 

  • Neissi G, Rafiee M, Nematollahi M, Safari O (2013) The effect of Pediococcus acidilactici bacteria used as probiotic supplement on the growth and non-specific immune responses of green terror, Aequidens rivulatu. Fish Shellfish Immunol 35:1976–1980

    Article  CAS  PubMed  Google Scholar 

  • Ng WK, Koh CB (2011) Application of organic acids in aquafeeds: impacts on fish growth, nutrient utilization and disease resistance. In: Luckstadt C (ed) Standards for Acidifiers – Principles for the Use of Organic Acids in Animal Nutrition. Proceeding of the 1st International Acidifier Summit, Nottingham University Press, Nottingham, pp 49–58

    Google Scholar 

  • Ng WK, Koh CB, Sudesh K, Siti-Zahrah A (2009) Effects of dietary organic acids on growth, nutrient digestibility and gut microflora of red hybrid tilapia, Oreochromis sp., and subsequent survival during a challenge test with Streptococcus agalactiae. Aquacalt Res 40:1490–1500

    Article  CAS  Google Scholar 

  • Ng WK, Ling LC, Romano N, Kua BC (2017) Dietary short-chain organic acids enhanced resistance to bacterial infection and hepatopancreatic structural integrity of the giant freshwater pawn, Macrobrachium rosenbergii. Int aquat res 9:293–302

    Article  Google Scholar 

  • Nguyen DH, Jeong Seok W, Ho KI (2020) Organic acids mixture as a dietary additive for pigs—a review. Animals (Basel) 10(6):952. https://doi.org/10.3390/ani10060952

    Article  Google Scholar 

  • Ochoa SJL, Olmos SJ (2006) The functional property of Bacillus for shrimp feeds. Food Microbiol 23:519–525

    Article  Google Scholar 

  • Paengkoum P, Yong H (2009) Supplementation of probiotics on feed intake, digestibility and conjugatedlinoleic acid contents in plasma and meat of growing goats. Agric J 4:231–241

    CAS  Google Scholar 

  • Panigrahi A, Kiron V, Kobayash T, Puangkaew J, Satoh S, SugitaH (2004) Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Vet Immunol Immunopathol 102:379–388

  • Partanen KH, Morz Z (1999) Organic acids for performance enhancement in pig diets. Nutr Res Rev12:117–145

  • Pearlin BV, Muthuvel S, Govidasamy P, Villavan M, Alagawany M, Ragab Farag M, Gopi M (2020) Role of acidifiers in livestock nutrition and health: a review. J Anim Physiol Nutr 104(2):558–569. https://doi.org/10.1111/jpn.13282

    Article  Google Scholar 

  • Ramezani-Fard E, Zokaeifar H, Ebrahimi M, Kamarudin MS, Goh YM, Ehteshami F (2014) Probiotic administration of Litopenaeus vannamei: is there any negative effect on the fatty acid profile of meat? Iran J Fish Sci 13(3):550–559

    Google Scholar 

  • Ramiez RF, Dixon BA (2003) Enzyme production by obligate intestinal anaerobic bacteria isolated from Oscars, angelfish and souther flounder. Aquaculture 227:417–426

    Article  Google Scholar 

  • Rawling MD, Merrifield DL, Davies SJ (2009) Preliminary assessment of dietary supplementation of Sangrovit on red tilapia (Oreochromis niloticus) growth performance and health. Aquaculture 294:118–122

    Article  CAS  Google Scholar 

  • Ringø E (1992) Effects of dietary formate and acetate on growth and lipid digestibility in Arctic charr, Salvelinus alpinus (L.). Fiskeridirektoratets Skrifter. Serie Ernaering 5:17–24

    Google Scholar 

  • Ringø E, Song SK (2016) Application of dietary supplements (synbiotics and probiotics in combination with plant products and ß-glucans) in aquaculture. Aquac Nutr 22:4–24

    Article  Google Scholar 

  • Ringø E, Olsen RE, Castell JD (1994a) Effect of dietary lactate on growth and chemical composition of Arctic charr Salvelinus alpinus. World Aquacult Soc 25:483–486

    Article  Google Scholar 

  • Ringø E, Olsen RE, Castell JD (1994b) Effect of dietary lactate on growth and chemical composition of Arctic charr Salvelinus alpinus. J World Aquacult Soc 25:483–486

    Article  Google Scholar 

  • Ringø E, Dimitroglou A, Hoseinifar SH, Davies SJ (2014) Prebiotics in finfish: an update. In: Merrifield D, Ringø E (eds) Aquaculture nutrition: gut health, probiotics and prebiotics. Wiley-Blackwell Publishing, Oxford, UK, pp 360–400

    Chapter  Google Scholar 

  • Russell JB, Diez-Gonzalez F (1998) The effects of fermentation acids on bacterial growth. Adv Microb Physiol 39:205–234

    Article  CAS  PubMed  Google Scholar 

  • Saint-Paul U (2018) Native fish species boosting Brazilian’s aquaculture development. Acta Fish Aquat Resour 5:1–9

    Google Scholar 

  • Sanhueza E, Esteban P, González Carlos L, García A (2015) Effect of pH in the survival of Lactobacillus salivarius strain UCO_979C wild type and the pH acid acclimated variant. Electron J Biotechnol 18:343–346. https://doi.org/10.1016/j.ejbt.2015.06.005

    Article  Google Scholar 

  • Silva BC, Vieira FN, Mourino JLP, Ferreira GS, Seiffert WQ (2013) Salts of organic acids selection by multiple characteristics for marine shrimp nutrition. Aquaculture 384–387:104–110

    Article  Google Scholar 

  • Simon O (2010) An interdisciplinary study on the mode of action of probiotics in pigs. Anim Feed Sci 19:230–243

    Article  Google Scholar 

  • Su X, Li X, Leng X, Tan C, Liu B, Chai X, Guo T (2014) The improvement of growth, digestive enzyme activity and disease resistance of white shrimp by the dietary citric acid. Aquacult Int 22:1823–1835

    Article  CAS  Google Scholar 

  • Sugiura SH, Roy PK, Ferraris RP (2006) Dietary acidification enhances phosphorus digestibility but decreases H+ /K+ − ATPase expression in rainbow trout. Exp Biol 209:3719–3728

    Article  CAS  Google Scholar 

  • Suzer C, Coban D, Kamaci HO, Saka S, Firat K, Otgucuoglu O, Kucuksari H (2008) Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture 280:140–145

    Article  CAS  Google Scholar 

  • Tabrizi JM, Barzeghar A, Farzampour S, Mirzaii H, Safarmashaei S (2012) Study of the effect of prebiotic (Saccharomyces cerevisiae) and acidifier on growth parameters in grower’s rainbow trout (Oncorhynchus mykiss). Ann Biol Res 3:2053–2057

    CAS  Google Scholar 

  • Tan HY, Chen SW, Hu SY (2019) Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 92:265–275. https://doi.org/10.1016/j.fsi.2019.06.027

    Article  CAS  PubMed  Google Scholar 

  • Tellez G, Higgins S, Donoghue A, Hargis B (2006) Digestive physiology and the role of microorganisms. J Appl Poult Res 15:136–144

    Article  Google Scholar 

  • Thaela M, Jensen M, Pierzynowski S, Jakob S, Jensen B (1998) Effect of lactic acid supplementation on pancreatic secretion in pigs after weaning. Anim Feed Sci 7:181–183

    Article  Google Scholar 

  • Van Dam H (2006) Organic acids and their salts. Feed Mix 14:28–31

    Google Scholar 

  • Vine NG, Leukes WD, Kaiser H, Daya S, Baxter J, Hecht T (2004) Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. Fish Dis 27:319–326

    Article  CAS  Google Scholar 

  • Vizcaıno-Ochoa V, Lazo JP, Baron-Sevilla B, Draw-bridge MA (2010) The effect of dietary docosahexaenoic acid (DHA) on growth, survival and pigmentation of California halibut Paralichthys californicus larvae (Ayres, 1810). Aquaculture 302:228–234

    Article  Google Scholar 

  • Wang YB, Tian ZQ, Yao JT, Li WF (2008b) Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture 277:203–207

    Article  Google Scholar 

  • Wassef EA, Saleh NE, Abdel-Meguid NE, Barakat KM, Abdel-Mohsen HH, EibermawyNM (2020) Sodium propionate as a dietary acidifier for European seabass (Dicentrarchus labrax) fry: immune competence, gut microbiome, and intestinal histology benefits. Aquacult Int 28:95–111

    Article  CAS  Google Scholar 

  • Wuertz S, Lutz I, Gessner J, Loeschau P, Hogans B, Kirschbaum F, Kloas W (2006) The influence of rearing density as environmental stressor on cortisol response of shortnose sturgeon (Acipenser brevirostrum). Appl Ichthyol 22:269–273

    Article  Google Scholar 

  • Xu H, Wang J, Mai K, Xu W, Zhang W, Zhang Y, Qinghui A (2014) Dietary docosahexaenoic acid to eicosapentaenoic acid (DHA/EPA) ratio influenced growth performance, immune response, stress resistance and tissue fatty acid composition of juvenile Japanese seabass, Lateolabrax japonicus (Cuvier). Aquac Res 47(3):1–17. https://doi.org/10.1111/are.12532

    Article  CAS  Google Scholar 

  • Yano T (1992) Assays of hemolytic complement activity. In: Stolen JS, Fletcher TC, Anderson DP, Kaattari SL, Rowley AF (eds) Techniques in fish immunology. S.O.S Publication, Fair Haven, NJ, pp 131–141

    Google Scholar 

  • Yarmohammadi M, Shabani A, Pourkazemi M, Soltanloo H, ImanpourM R (2012) Effects of starvation and re-feeding on growth performance and content of plasma lipids, glucose and insulin in cultured juvenile Persian sturgeon (Acipenser persicus, Borodin 1897). Appl Ichthyol 28:692–696. https://doi.org/10.1111/j.1439-0426.2012.01969.x

    Article  CAS  Google Scholar 

  • Ye JD, Wang K, Li FD, Sun YZ (2011) Single or combined effects of fructo- and mannan oligosaccharide supplements and Bacillus clausii on the growth, feed utilization, body composition, digestive enzyme activity, innate immune response and lipid metabolism of the Japanese flounder Paralichthys olivaceus. Aquac Nutr 17:902–911

    Article  Google Scholar 

  • Yi C, Liu C, Chuang K, Changa Y, Hu S (2019) A potential probiotic Chromobacterium aquaticum with bacteriocin-like activity enhances the expression of indicator genes associated with nutrient metabolism, growth performance and innate immunity against pathogen infections in zebrafish (Danio rerio). Fish Shellfish Immunol 93:124–134. https://doi.org/10.1016/j.fsi.2019.07.042

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Duan Y, Dong H, Zhang J (2018) Effects of dietary Lactobacillus plantarum on growth performance, digestive enzymes and gut morphology of Litopenaeus vannamei. Prob Anti Prot 10:504–510

    CAS  Google Scholar 

  • Zhou QC, Buentello JA, Gatlin DM (2010) Effects of dietary prebiotics on growth performance, immune response and intestinal morphology of red drum (Sciaenops ocellatus). Aquaculture 309:253–257

    Article  CAS  Google Scholar 

  • Zokaeifar, H., Balcázar, J. L., Saad, C. R., Kamarudin, M. S., Sijam, K., Arshad, A., Nejat, N (2012) Effects of Bacillus Subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 33(4) 683-689.

  • Zuo RT, Ai QH, Mai KS, Xu W, Wang J, Xu HG, Liufu ZG, Zhang YJ (2012) Effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth, nonspecific immunity, expression of some immune related genes and disease resistance of large yellow croaker (Larmichthys crocea) following natural infestation of parasites (Cryptocaryon irritans). Aquaculture 334–337:101–109. https://doi.org/10.1016/j.aquaculture.2011.12.045

    Article  CAS  Google Scholar 

  • Zuo ZH, Shang BJ, Shao YC, Li WY, Sun JS (2019) Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish Shellfish Immunol 86:160–168

Download references

Acknowledgments

Special thanks to prof. Manuel Yufera for his valuable advices in various stages of this project.

Author information

Authors and Affiliations

Authors

Contributions

Abdolmohammad Abedian Kenari designed the study. Rasool Zare conducted experiments, analyzed data, and wrote manuscript. Mohammadali Yazdani Sadati conceived the research. All authors read and approved the manuscript.

Corresponding author

Correspondence to Abdolmohammad Abedian Kenari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of fish were followed by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, R., Abedian Kenari, A. & Yazdani Sadati, M. Influence of dietary acetic acid, protexin (probiotic), and their combination on growth performance, intestinal microbiota, digestive enzymes, immunological parameters, and fatty acids composition in Siberian sturgeon (Acipenser baerii, Brandt, 1869). Aquacult Int 29, 891–910 (2021). https://doi.org/10.1007/s10499-021-00652-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-021-00652-2

Keywords

Navigation