Skip to main content
Log in

Sonic Boom: From the Physics of Nonlinear Waves to Acoustic Ecology (a Review)

  • NONLINEAR ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A history of the topic is presented. First, information is given about the development of supersonic aviation. Then, the history of studying the phenomenon of sonic boom generated by flying bullets and projectiles is briefly described. The results of the renowned aeroacoustic scientists K. Doppler and E. Mach are presented, as well as little-known historical facts found in old foreign sources. The need for correct use of the term “sonic boom” is pointed out, which is not limited to aviation acoustics problems, but is inherent to many natural and technogenic phenomena. A 100-year priority of the acoustic effect over its weaker optical counterpart, Vavilov–Cherenkov radiation, is mentioned. Problems related to calculating the generation of perturbations in the interaction of transonic and supersonic flows with real bodies are described: the need to take into account the details of the shape of the aerodynamic profile, peculiarities in the behavior of the boundary layer, the formation of shock waves, generation of flow turbulence, and the kinetics (relaxation and dissociation) of atmospheric gases. The phenomenon of wave resonance, responsible for the formation of the boom when breaking the sound barrier, is discussed. Nonlinear processes in N-wave formation in the propagation of complexly shaped signal are described. The influence of the main effects distorting the N-shaped profile is explained: diffraction, focusing, and multiple relaxation phenomena broadening the shock front. The theory of N-waves in an inhomogeneous medium is discussed. Examples of ray patterns in a standard atmosphere and in the region behind the turbulent boundary layer are constructed. Calculation methods based on nonlinear geometric acoustics and nonlinear quasioptics approximations are presented. Problems related to the consequences of sonic booms and their harmful effects on the environment, structures, and living organisms are indicated. An extensive bibliography and a list of fundamental reviews in the domestic and foreign literature are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.

Similar content being viewed by others

Notes

  1. Mach is also commonly considered the progenitor of such well-known physical concepts as Mach number, Mach cone, and Mach angle. However, these were introduced much earlier (1847, 1848) in theoretical studies by another famous physicist, Christian Doppler (see below). At the same time, these physics terms, clearly illustrated in photographs in Mach’s experiments, were in 1929, at the suggestion of the Swiss aerodynamic physicist Jacob Ackert, “tied” to Mach [27].

REFERENCES

  1. D. A. Sobolev, World History of Airplanes (Rusavia, Moscow, 2001) [in Russian].

    Google Scholar 

  2. E. Cichosz, Rozwyj samolotyw naddzwiekowych (Wydawnictwa Komunikacji i Lacznosci, Warszawa, 1980; Mir, Moscow, 1983).

  3. T. Gold, Nature 170, 808 (1952).

    Article  ADS  Google Scholar 

  4. C. Warren, Nature 171, 214 (1953).

    Article  ADS  Google Scholar 

  5. V. Bliznyuk, L. Vasil’ev, V. Vul’, et al., Truth on Supersonic Passenger Airplanes (Moskovskii Rabochii, Moscow, 2000) [in Russian].

    Google Scholar 

  6. I. V. Ostoslavskii, A. D. Mironov, and E. A. Kirillov, Air fleet technology (Tekh. Vozdushn. Flota), No. 5 (1956)[in Russian].

  7. Yu. L. Zhilin, Tr. TsAGI Proceedings (Trudy TsAGI), No. 1094, 14 (1967).

  8. Yu. L. Zhilin, TsAGI Science J. (Uchenye Zapiski TsAGI), 2 (3), 1 (1971) [in Russian].

  9. M. A. Parker, Aircr. Eng. Aerosp. Technol. 40 (8), 30 (1968).

    Article  Google Scholar 

  10. D. C. Aronstein and K. L. Schueler, J. Aircr. 42 (3), 775 (2005).

    Article  Google Scholar 

  11. D. J. Maglieri, Report NASA/CR–2011-217144 (2011).

  12. S. I. Vavilov, Dokl. Akad. Nauk SSSR 2 (8), 457 (1934).

    Google Scholar 

  13. P. A. Cherenkov, Dokl. Akad. Nauk SSSR 2 (8), 451 (1934).

    Google Scholar 

  14. I. E. Tamm and I. M. Frank, Dokl. Akad. Nauk SSSR 14 (3), 107 (1937).

    Google Scholar 

  15. P. A. Cherenkov, Usp. Fiz. Nauk 68 (3), 377 (1959).

    Article  Google Scholar 

  16. I. E. Tamm, Usp. Fiz. Nauk 68 (3), 387 (1959).

    Article  Google Scholar 

  17. I. M. Frank, Usp. Fiz. Nauk 68 (3), 397 (1959).

    Article  Google Scholar 

  18. I. E. Tamm, J. Phys. USSR 1 (5-6), 439 (1939), I. E. Tamm, Collection of Scientific Papers (Nauka, Moscow, 1975), Vol. 1, p. 77 [in Russian].

    Google Scholar 

  19. G. A. Askar’yan, Sov. Phys. JETP 15 (5), 943 (1962).

  20. V. Roppo, K. Kalinowski, Y. Sheng, et al., Opt. Express 21 (22), 25715 (2013).

    Article  ADS  Google Scholar 

  21. M. E. Goldstein, Aeroacoustics (McGraw-Hill, 1976; Mashinostroenie, Moscow, 1981).

  22. J. W. Miles, J. Acoust. Soc. Am. 20 (3), 314 (1948).

    Article  ADS  Google Scholar 

  23. J. W. Miles, The Potential Theory of Unsteady Supersonic Flow (Cambridge Univ. Press, 1959; Gos. Izd. Fiz.-Mat. Lit., Moscow, 1963).

  24. http://www.deutsches-museum.de/archiv/archiv-online/ernst-mach.

  25. E. Mach and P. Salcher, Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2A 95, 764 (1887).

  26. E. Mach and P. Salcher, Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2A 98, 41 (1889).

  27. N. Rott, Annu. Rev. Fluid Mech. 17, 1 (1985).

    Article  ADS  Google Scholar 

  28. Ch. Doppler, Über den Einfluß der Bewegung des Fortpflanzungsmittels auf die Erscheinungen der Äther-, Luft- und Wasserwellen (Commission bei Borrosch & Andre, Prague, 1847). https://books.google.ru/books?id=aKteAAAAcAAJ&pg=PA13&lpg=PA13&dq=%C3%9Cber+ den+Einflu%C3%9F+der+Bewegung+des+Fortpflanzungs+mittels+auf+die+Erscheinungen&source= bl&ots=9EWZZCvmIK&sig=ACfU3U15e0oe3xFoninthnjzLdhAOaKX3A&hl=ru&sa=X&ved=2ahUKE-wiQzI_7zanrAhX7isMKHXajAg4Q6AEwAnoECAEQAQ# v=onepage&q=%C3%9Cber%20den%20Einflu%C3% 9F%20der%20Bewegung%20des%20Fortpflanzungs% 20mittels%20auf%20die%20Erscheinungen&f=false. Cited 08.09.2020.

  29. E. Mach, Populär-wissenschaftliche Vorlesungen (Barth, Leipzig, 1903; R&C Dynamics, Moscow-Izhevsk, 2001).

  30. E. Mach and B. Doss, Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2A 102, 248 (1893).

  31. W. H. Bragg, The World of Sound (G. Bell and Sons Limited, 1920), The Universe of Light (Macmillan Co., 1933) (Nauka, Moscow, 1967).

  32. L. Prandtl, Gesammelte Abhandlungen: zur angewandten Mechanik, Hydro- und Aerodynamik (Springer-Verlag, 1961; Regular and Chaotic Dynamics, Izhevsk, 2000).

  33. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves, 3rd ed. (Lenand, Moscow, 2015) [in Russian].

    Google Scholar 

  34. L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed. (Elsevier, New York, 1982).

  35. S. N. Gurbatov, O. V. Rudenko, and A. I. Saichev, Waves and Structures in Nonlinear Nondispersive Media (Higher Education Press, Springer, New York, 2011).

  36. A. A. Karabutov and O. V. Rudenko, Sov. Phys. Acoust. 25 (4), 306 (1979).

    ADS  Google Scholar 

  37. S. N. Gurbatov, A. I. Saichev, and I. G. Yakushkin, Sov. Phys. Uspekhi 26 (10), 857 (1983).

  38. O. V. Rudenko, Sov. Phys. Uspekhi 29 (7), 620 (1986).

  39. O. V. Rudenko and C. M. Hedberg, Acoust. Phys. 64 (4), 422 (2018).

    Article  ADS  Google Scholar 

  40. O. V. Rudenko, Appl. Nonlin. Dynamics 26 (3), 7 (2018).

  41. B. O. Enflo, C. M. Hedberg, and O. V. Rudenko, J. Acoust. Soc. Am. 117 (2), 601 (2005).

    Article  ADS  Google Scholar 

  42. O. V. Rudenko and C. M. Hedberg, Nonlinear Dyn. 35 (2), 187 (2004).

    Article  Google Scholar 

  43. A. A. Karabutov and O. V. Rudenko, Sov. Phys. Doklady 24 (10), 835 (1979).

  44. C. Lin, E. Reissner, and H. S. Tsien, J. Mathematics and Physics 27 (3), 220 (1948).

    Article  Google Scholar 

  45. O. V. Rudenko, Acoust. Phys. 56 (4), 457 (2010).

    Article  ADS  Google Scholar 

  46. N. H. Ibragimov and O. V. Rudenko, Acoust. Phys. 50 (4), 406 (2004).

    Article  ADS  Google Scholar 

  47. B. K. Novikov, O. V. Rudenko, and V. I. Timoshenko, Nonlinear Underwater Acoustics (Am. Inst. Physics, New York, 1987).

  48. S. N. Gurbatov and I. Yu. Demin, Sov. Phys. Acoustics 28 (5), 634 (1982).

    Google Scholar 

  49. O. V. Rudenko, S. N. Gurbatov, and C. M. Hedberg, Nonlinear Acoustics through Problems and Examples Trafford, Victoria, Canada, 2011.

  50. O. V. Rudenko and V. A. Khokhlova, Sov. Phys. Acoustics 37 (1), 90 (1991).

    Google Scholar 

  51. O. V. Rudenko and V. A. Khokhlova, Sov. Phys. Acoustics 34 (3), 289 (1988).

    Google Scholar 

  52. B. O. Enflo and O. V. Rudenko, Acustica-Acta Acust. 88 (2), 155 (2002).

    Google Scholar 

  53. O. V. Rudenko and S. N. Gurbatov, Dokl. Math. 97 (1), 95 (2018).

    Article  Google Scholar 

  54. O. V. Rudenko and C. M. Hedberg, Acoust. Phys. 61 (1), 28 (2015).

    Article  ADS  Google Scholar 

  55. Yu. N. Makov, Acoust. Phys. 46 (5), 596 (2000).

    Article  ADS  Google Scholar 

  56. Yu. N. Makov, Acoust. Phys. 65 (6), 670 (2019).

    Article  ADS  Google Scholar 

  57. B. Lipkens and D. T. Blackstock, J. Acoust. Soc. Am. 103 (1, pt. 1), 148 (1998), J. Acoust. Soc. Am. 104 (3, pt. 2), 1302 (1998).

    ADS  Google Scholar 

  58. A. D. Pierce, J. Acoust. Soc. Am. 44, 1052 (1968).

    Article  ADS  Google Scholar 

  59. S. I. Soluyan and R. V. Khokhlov, Sov. Phys. Acoustics 8 (2), 220 (1962).

    Google Scholar 

  60. O. V. Rudenko and S. I. Soluyan, Sov. Phys. Acoustics 18 (2), 352 (1973).

    Google Scholar 

  61. O. V. Rudenko, Acoust. Phys. 60 (4), 398 (2014).

    Article  ADS  Google Scholar 

  62. O. V. Rudenko, S. N. Gurbatov, and I. Yu. Demin, Acoust. Phys. 60 (5), 499 (2014).

    Article  ADS  Google Scholar 

  63. O. A. Vasil’eva, E. A. Lapshin, and O. V. Rudenko, Acoust. Phys. 65 (1), 23 (2019).

    Article  ADS  Google Scholar 

  64. S. N. Kulichkov, Russ. Acad. Sci. Bull. Phys. Atmos. Ocean 28 (4), 339 (1992).

    ADS  Google Scholar 

  65. A. M. Lerner, V. E. Ostashev, and V. E. Fridman, Sov. Phys. Acoustics 36 (2), 313 (1990).

    Google Scholar 

  66. Standard Atmosphere: Parameters (Standard Press, Moscow, 1981) [in Russian].

  67. V. E. Fridman, Sov. Phys. Acoustics 31 (4), 571 (1985).

    Google Scholar 

  68. I. P. Chunchuzov, Sov. Phys. Acoustics 30 (4), 546 (1984).

    Google Scholar 

  69. O. V. Rudenko and B. O. Enflo, Acustica-Acta Acust. 86, 229 (2000).

    Google Scholar 

  70. Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Med. (Springer, New York, 1990).

  71. K. E. Gubkin, J. Appl. Math. Mech. 22 (4), 561 (1958).

    Article  MathSciNet  Google Scholar 

  72. O. S. Ryzhov, J. Appl. Mech. Techn. Physics. 2 (2), 15 (1961).

    Google Scholar 

  73. P. F. Korotkov, J. Appl. Mech. Techn. Physics 5 (5), 30 (1964).

    Google Scholar 

  74. Yu. L. Zhilin, Tr. Sci. Works TSAGI, 6 (4), 21 (1975) [in Russian].

  75. O. V. Rudenko, A. K. Sukhorukova, and A. P. Sukhorukov, Acoust. Phys. 40 (2), 290 (1994).

    Google Scholar 

  76. O. V. Rudenko, A. K. Sukhorukova, and A. P. Sukhorukov, Acoust. Phys. 41 (2), 291 (1995).

    ADS  Google Scholar 

  77. O. V. Rudenko, A. K. Sukhorukova, and A. P. Sukhorukov, Acoust. Phys. 43 (3), 396 (1997).

    Google Scholar 

  78. L. M. Brekhovskikh, Waves in Layered Med. (Acad. Press, New York, 2012).

  79. O. V. Rudenko and A. B. Shvartsburg, Acoust. Phys. 56 (4), 429 (2010).

    Article  ADS  Google Scholar 

  80. O. V. Rudenko, Phys. Uspekhi 38 (9), 965 (1995).

  81. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Short-Wavelength Diffraction Theory (Alpha Science, Oxford, 2009).

  82. O. V. Rudenko, S. I. Soluyan, and R. V. Khokhlov, Sov. Phys. Acoustics 20 (3), 449 (1974).

    Google Scholar 

  83. A. N. Dubrovskii, O. V. Rudenko, and V. A. Khokhlova, Acoust. Phys. 42 (5), 550 (1996).

    ADS  Google Scholar 

  84. J. L. Thomas and M. A. Fink, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 43 (6), 1122 (1996).

    Article  Google Scholar 

  85. V. A. Gusev and O. V. Rudenko, Acoust. Phys. 52 (1), 24 (2006).

    Article  ADS  Google Scholar 

  86. A. Kjellberg, Scand. J. Work Environ. Health 16 (suppl. 1), 29, 1990.

  87. J. D. Leatherwood, K. P. Shepherd, and B. M. Sullivan. A New Simulator for Assessing Subjective Effects of Sonic Booms (NASA Technical Memorandum 104150. Langly research Center, 1991).

  88. S.H. Park, P. J. Lee, and H. J. Jeong, Building and Environment 136, 302, 2018.

  89. H. Fastl and E. Zwicker, Psychoacoustics. Facts and Models (Springer, Berlin, 2007).

  90. J. Obata, J. Phys. Soc. Jpn. 12 (4), 80 (1930).

    Google Scholar 

  91. G. B. Logan, J. Air Law Commer. 5 (4), Art. 7, 548 (1934).

    Google Scholar 

  92. Domestic Air News (from the Aeronautics Branch), Jan. 31 (1928).

  93. S. Savinov, Delovoi Kvadrat, No. 10 (164) (Izhevsk, 2019). http://www.d-kvadrat.ru/tekhnologii/3631. Cited September 8, 2020.

  94. K. M. Manci, D. N. Gladwin, R. Villella, and M. G. Cavendish, OSTI.GOV. Technical Report. https://www.fs.fed.us/eng/techdev/IM/sound_measure/Manci_et_al_1988.pdf. Cited September 8, 2020.

  95. Yu. N. Makov, NOISE. Theory and Pract. 4 (1), 18 (2018).

    Google Scholar 

  96. V. A. Belokon’, O. V. Rudenko, and R. V. Khokhlov, Sov. Phys. Acoustics 23 (4), 361 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Rudenko.

APPENDIX

APPENDIX

Attached is a bibliography of English- and Russian-language review materials on sonic boom for the entire period of supersonic aviation. The order of sources is chronological. Their numbering is sequential with the addition of the letter “a.” Some sources are provided with comments.

1951–1960

1a. G. M. Lilley, R. Westley, A. H. Yates., and J. R. Busing, J. Roy. Aeronaut. Soc. 57 (6), 396 (1953). See also: G. M. Lilley, R. Westley, A. H. Yates, and J. R. Busing, On some aspects of the noise propagation from supersonic aircraft, Rep. No. 71 (The College of Aeronautics, Cranfield, England, Feb., 1953). (The first review on SB published in a specialized journal. This journal review repeats actually the technical report. Both texts at the “initial level” cover the main aspects of SB, but do not touch on SB generation by a concrete aircraft. We pay attention to the absence (at that time) of a single generally accepted term for SB. The related term “boom” (without “sound”) is used).

2a. G. M. Lilley, R. Westley, A. H. Yates., and J. R. Busing, Nature 17, 994 (June 6, 1953). (The authors of [1a] published a shorter version of the same review in the prestigious journal “Nature”, while changing the term for SB).

3a. J. M. Talbot, J. Am. Med. Assoc. 158 (17), 1508 (Aug. 27, 1955). (This short review integrates for the first time the physical concepts of SB and information on its impact on the population. It is proposed here to assign the term “sonic boom” to the effect under consideration, but this term becomes generally accepted only in the next decade.)

4a. P. S. Rao, Supersonic bangs: Part I, Aeron. Quart. 7 (1), 21 (1956).

5a. P. S. Rao, Supersonic bangs: Part II, Aeron. Quart. 7 (2), 135 (1956).

6a. R.A. Struble, C.E. Stewart, E.A. Brown, and A. Ritter, Theoretical investigation of sonic boom phenomena (WADC TR 57-412. ASTIA AD 130883. Aug. 1957).

7a. D. G. Randall, Methods for estimating distributions and intensities of sonic bangs. Appendix: The propagation of sonic bangs in a non-homogeneous atmosphere (A.R.C. Tech. report R & M No. 3113, 1959).

1961–1970

8a. J. K. Power, Some considerations of sonic boom (USA, Federal Aviation Agency, Office of Plans, 1961).

9a. C. H. E. Warren and D. G. Randal, Prog. Aerosp. Sci. 1, 238 (1961).

10a. C. H. E. Warren, Prog. Aerosp. Sci. 5, 295 (1964).

11a. Proceedings of the Sonic Boom Symposium, J. Acoust. Soc. Am. 39 (5, pt. 2), P. S1–S80 (1966). (Proceedings of the Symposium on SB contain 11 reviews on various aspects of the problem).

12a. Sonic boom research. Edited by A. R. Seebass. (SP-147, NASA, 1967). (Proceedings (12 articles) of a conference held at the NASA, Washington, D. C., April 12, 1967, on research on the generation and propagation of SB).

13a. H. H. Hubbard, Physics Today, 21 (2), 31 (1968).

14a. A. D. Pierce, J. Acoust. Soc. Am. 44 (4), 1052 (1968).

15a. S. C. Crow, J. Fluid Mech. 37 (3), 529 (1969).

1971–1980

16a. A. R. George and K. J. Plotkin, Phys. Fluids 14 (3), 548 (1971).

17a. Yu. L. Zhilin, TsAGI Science Journal (Uchenye zapiski TsAGI) 2 (3), 1 (1971) [in Russian].

18a. A. R. Seebass and A. R. George, J. Acoust. Soc. Am. 51 (2, pt. 3), 686 (1972).

19a. A. D. Pierce and D. J. Maglieri, J. Acoust. Soc. Am. 51 (2, pt. 3), 702 (1972).

20a. Yu. L. Zhilin, TsAGI Proceedings (Trudy TsAGI), issue 1489, 3 (1973) [in Russian].

21a. H. W. Carlson, Simplified Sonic-Boom Prediction (TP-1122. NASA, 1978).

1981–1990

22a. C. M. Darden, Charts for determining potential minimum sonic-boom overpressures for supersonic cruise aircraft (TP-1820. NASA, 1981).

23a. K. J. Plotkin and J. Kenneth, Sonic boom prediction model for supersonic flight corridors (WR 85-25. Wyle Labs., Aug. 1985).

24a. K. J. Plotkin and J. Kenneth, Focus boom footprints for various air force supersonic operations (WR 85-22. Wyle Labs., Oct. 1985).

25a. K. P. Shepherd and C. A. Powell, Status and Capabilities of Sonic Boom Simulators (TM-87664. NASA, 1986).

26a. C. M. Darden, W. D. Hayes, A. R. George, and A. D. Pierce, Status of sonic boom methodology and understanding (CP-3027. NASA, 1989).

27a. K. J. Plotkin, Review of sonic boom theory (AIAA-89-1105, 1989).

1991–2000

28a. D. J. Maglieri and K. J. Plotkin, Sonic boom (ch. 10, P. 519-561 in: Aeroacoustics of flight vehicles - Theory and practice. V. 1: Noise Sources. NASA-RP-1258, 1991).

29a. R.A. Lee and J. M. Downing, J. Acoust. Soc. Am. 99 (2), 768 (1996).

30a. R. O. Cleveland, J. P. Chambers, H. E. Bass, et al., J. Acoust. Soc. Am. 100 (5), 3017 (1996).

31a. B. Lipkens and D. T. Blackstock, J. Acoust. Soc. Am. 103 (1), 148 (1998).

32a. B. Lipkens and D. T. Blackstock, J. Acoust. Soc. Am. 104 (1, pt. 1), 1301 (1998).

2001–2010

33a. K. J. Plotkin, J. Acoust. Soc. Am. 111 (1, pt. 2), 530 (2002).

34a. J. Leatherwood, B. Sullivan, K. Shepherd, et al., J. Acoust. Soc. Am. 111 (1, pt. 2), 586 (2002).

35a. K. J. Plotkin and D. J. Maglieri, AIAA Paper 2003-3575 (2003).

36a. Y. Makino, K. Suzuki, M. Noguchi, and K. Yoshida, J. Aircraft 41, 1413 (2003).

37a. J. Pawlowski, D. Graham, C. Boccadoro, et al., AIAA Paper 2005 - 5 (2005).

38a. D. C. Howe, AIAA Paper 1005–1014 (2005).

39a. V. V. Kovalenko and S. L. Chernyshov, TsAGI Science Journal (Uchenye zapiski TsAGI) 37 (3), 53 (2006) [in Russian].

40a. T. Feder, Physics Today 60 (4), 24 (2007).

41a. H. Yamashita and S. Obayashi, J. of Aircraft 46 (6), 1886 (2009).

42a. F. Alauzet and A. Loseille, J. Comp. Phys. 229, 561 (2010).

43a. V. I. Biryuk, M. R. Ibragimov, V. V. Kovalenko, et al., TsAGI Science Journal (Uchenye zapiski TsAGI) 41 (5), 13 (2010) [in Russian].

44a. L. R. Benson, Case 4. Softening the Sonic Boom: 50 Years of NASA Research. (pp. 180–274), from NASA’s contributions to aeronautics, ed. by R. P. Hallion (NASA SP-2010-570, 2010).

2011–2020

45a. V. M. Fomin, V. F. Chirkashenko, V. F. Volkov, and A. M. Kharitonov, Thermophysics and Aeromechanics 18, 507 (2011).

46a. M. Berci and L. Vigevano, Aerospace Sci. and Tech. 23, 280 (2012).

47a. L.R. Benson, Quieting the boom: the shaped sonic boom demonstrator and the quest for quiet supersonic flight (NASA, 2013). (The peculiarity of this book is a unified historical approach to highlighting this problem without structuring the material in separate areas. The book is an extended version of the bibliography [44a].)

48a. D. J. Maglieri, P. J. Bobbitt, K. J. Plotkin, et al., Sonic Boom: six decades of research, Technical report NASA, SP-2014-622 (Langley Research Center, 2014). (The material of the book is divided into chapters that highlight certain traditional areas of the SB problem.)

49a. R. Yamashita and K. Suzuki, Conference: AIAA Aviation, 16–20 June 2014, Atlanta, GA. AIAA 2014–2269, (2014).

50a. J. Takeno, T. Misaka, K. Shimoyama, and S. Obayashi, AIAA SciTech 5–9 Jan. 2015, Kissimmee, Florida. AIAA 2015 - 07445. (2015).

51a. M. Yamamoto, A. Hashimoto, and T. Aoyama, J. Acoust. Soc. Am. 137 (4), 1857 (2015).

52a. M. A. Park and J. M. Morgenstern, AIAA Journal of Aircraft 53 (2), 578 (2016).

53a. R. Yamashita and K. Suzuki, AIAA Journal 54 (10), 3223 (2016).

54a. V. F. Volkov, Journal of Engineering Physics and Thermophysics 90, 449 (2017).

55a. S. K. Rallabhandi, Sonic boom prediction and mitigation using three-dimensional Earth effects, Conference: 2018 Applied Aerodynamics Conference. AIAA 2018-2848 (2018).

56a. S.K. Rallabhandi, Correction for [55a], Conference: 2018 Applied Aerodynamics Conference. AIAA 2018-2848. c1 (2018).

57a. J. A. Page and A. Loubeau, CEAS Aeronautical Journal 10, 335 (2019).

58a. V. W. Sparrow, T. A. Stout, K. A. Bradley, and C. M. Hobbs, SonicBAT: Some highlights and subsequent developments, Proc. 23rd International Congress on Acoustics, 9–13 Sept. 2019, in Aachen, Germany. P. 1592–1599 (2019).

59a. B. Liebhardt, K. Lütjens, M. Swaid, et al., AIAA Aviation 2019 Forum, Dallas, Texas (2019).

60a. D. S. Lazzara, T. Magee, H. Shen, and J. H. Mabe, AIAA SciTech 2019 Forum, AIAA 2019-0606 (2019).

61a. C. R. Bolander, D. F. Hunsaker, H. Shen, and F. L. Carpenter, AIAA SciTech 2019 Forum, AIAA 2019-2091 (2019).

62a. I. G. Bashkirov, S. L. Chernyshev, V. S. Gorbovskoy, et al. MATEC Web Conf. (9th EASN Intern. Conf. “Innovation in Aviation & Space”) 304, 02003 (2019).

63a. R. Yamashita, L. Wutschitz, and N. Nikiforakis, J. Comput. Phys. 408, 109271 (2020). (This work, together with [53a, 49a], demonstrates the development of methods for modeling SB in a real stratified atmosphere.)

64a. V. S. Gorbovsky, A. V. Kazhan, V. G. Kazhan, and S. L. Chernyshov, TsAGI Science Journal (Uchenye zapiski TsAGI), 51 (2), 3 (2020) [in Russian].

65a. A. V. Potapkin and D. Yu. Moskvichev, Tech. Phys. Lett. 46, 295 (2020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudenko, O.V., Makov, Y.N. Sonic Boom: From the Physics of Nonlinear Waves to Acoustic Ecology (a Review). Acoust. Phys. 67, 1–25 (2021). https://doi.org/10.1134/S1063771021010036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771021010036

Keywords:

Navigation