Skip to main content
Log in

Degradation Kinetics of MgO-C Refractory at High Temperature

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The degradation mechanism of a MgO-C refractory was studied at 1973 K using an induction furnace under an Ar atmosphere. Cylindrical specimens were analyzed by X-ray computed tomography according to time. The degradation proceeded from the outer surfaces towards the core. Analysis of the degradation kinetics indicated the cylindrical shrinking core model could adequately describe the degradation behavior. The chemical reaction step between CO gas and the MgO aggregate was determined to be the rate-determining step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. S. Zhang and W.E. Lee: J. Eur. Ceram. Soc., 2001, vol. 21, pp. 2393–405. https://doi.org/10.1016/S0955-2219(01)00208-4

    Article  CAS  Google Scholar 

  2. Y. Cheng, T. Zhu, Y. Li and S. Sang: Ceram. Int., 2021, vol. 47, pp. 2538-46.

    Article  CAS  Google Scholar 

  3. T. Zhu, Y. Li, S. Sang, and Z. Xie: J. Eur. Ceram. Soc., 2017, vol. 4, pp. 1789–97. http://dx.doi.org/10.1016/j.jeurceramsoc.2016.11.013

    Article  CAS  Google Scholar 

  4. S. Jansson, V. Brabie, and P. Jönsson: Scand. J. Metall., 2005, vol. 34, pp. 283–92.

    Article  CAS  Google Scholar 

  5. C. Wagner, C. Wenzl, D. Dregurek, D. Kreuzer, S. Luidold and H. Schnideritsch: MMTB, 2017, vol. 48B, pp. 119-31.

    Article  Google Scholar 

  6. Z. Liu, L. Yuan, E. Jin, X. Yang, J. Yu: Ceram. Int., 2019, vol. 45, pp. 718-724.

    Article  CAS  Google Scholar 

  7. M.-A. Faghihi-Sani and A. Yamaguchi: Ceram. Int., 2002, vol. 28, pp. 835–9.

    Article  CAS  Google Scholar 

  8. B. Hashemi, Z.A. Nemati, and M.A. Faghihi-Sani: Ceram. Int., 2006, vol. 32, pp. 313–9.

    Article  CAS  Google Scholar 

  9. C. Liu, F. Huang, J. Sue, and X. Whang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 989-998.

    Article  Google Scholar 

  10. O. Volkova, P.R. Scheller, and B. Lychatz: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1782–92. http://dx.doi.org/10.1007/s11663-014-0115-y.

    Article  CAS  Google Scholar 

  11. X. Li, M. Rigaud, and S. Palco: J. Am. Ceram. Soc., 1995, vol. 78, pp. 965–71.

    Article  CAS  Google Scholar 

  12. N.K. Ghosh, D.N. Ghosh and K.P. Jagannathan: Brtish Ceram. Trans., 2000, vol. 99, No 3, pp. 124-128.

    Article  CAS  Google Scholar 

  13. S. Jansson, V. Brabie, and P. Jönsson: ISIJ Int., 2008, vol. 48, pp. 760–7.

    Article  CAS  Google Scholar 

  14. R.J. Fruehan and L.J. Martonik: Metall. Trans. B, 1976, vol. 7, pp. 537–42.

    Article  CAS  Google Scholar 

  15. L. Prentice, M. Nagle: TMS, 2009, pp. 35–39.

  16. G. Brooks, S. Trang, P. Witt, M.N.H. Khan, and M. Nagle: JOM, 2006, vol. 58, pp. 51–5.

    Article  CAS  Google Scholar 

  17. E. Y. Shafirovich and U.I. Goldshleger: Sci Technol, 1992, vol. 84, pp. 33-43.

    CAS  Google Scholar 

  18. L. Rongti, P. Wei, and M. Sano: Metall. Metall. Mater. Trans. B, 2003, vol. 34, pp. 433–7.

    Article  CAS  Google Scholar 

  19. F. Huang, C. Liu, N. Marouka and S.-Y. Kitamura: Ironmak. Steelmak., 2015, vol.42, pp. 553-560

    Article  CAS  Google Scholar 

  20. P. Glover: Petrophysics MSc Course Notes, University of Leeds UK, 2000, pp. 10.

  21. R.J. Leonard, R.H. Herron: J. Am. Ceram. Soc., 1972, vol. 55, pp. 1–6.

    Article  CAS  Google Scholar 

  22. K.L. Komarek, A. Coucoulas, and N. Klinger, J. Electrochem: Soc., 1963, vol. 110, p. 783. https://doi.org/10.1149/1.2425873

    Article  CAS  Google Scholar 

  23. S.K. Sadrnezhaad, Z.A. Nemati, S. Mahshid, S. Hosseini, and B. Hashemi: J. Am. Ceram. Soc., 2007, vol. 90, pp. 509–15. https://doi.org/10.1111/j.1551-2916.2006.01391

    Article  CAS  Google Scholar 

  24. A. Yamaguchi: Sugu Tukaeru Netsurikigaku, 1990, pp. 19–26.

  25. A. Coray and Z.R. Jovanovic: React Chem. Eng., 2019, vol. 4, pp. 939-953.

    Article  CAS  Google Scholar 

  26. B.A Chubukov, A.W. Palumbo, S.C. Rowe, I. Hischier, A.J. Gorehn and A.W. Weimer: Thermochimica Acta., 2016, vol. 636, pp. 23-32.

    Article  CAS  Google Scholar 

  27. J. Yang, S. Ozaki, R. Kakimoto, K. Okumura, M. Kuwabara and M. Sano: ISIJ Int., 2001, vol. 41, pp.945-954.

    Article  CAS  Google Scholar 

  28. Levenspiel, O.: Chemical Reaction Engineering, Wiley, New York, 1984, pp. 357-372.

    Google Scholar 

Download references

This work was supported by the sabbatical year research grant from Korea Polytechnic University, Korea Government (MOTIE) (P0008425, The Competency Development Program for Industry Specialist), and Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant (Grant number 20172010106310). The authors would like to thank POSCO CHEMICAL, KOREA, for their support of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsug Chung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 30, 2020; accepted February 5, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Myung, J. & Chung, Y. Degradation Kinetics of MgO-C Refractory at High Temperature. Metall Mater Trans B 52, 1179–1185 (2021). https://doi.org/10.1007/s11663-021-02106-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02106-9

Navigation