Skip to main content

Advertisement

Log in

Temperature Distribution in the As-Cast Steel Specimen During Gleeble Hot-Tensile Test and Its Effect on High-Temperature Mechanical Properties

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The intrinsic factor of crack defect in continuous casting slab is determined by the high-temperature mechanical properties of slab itself. At present, the measurement for the thermal mechanical properties is mostly achieved by Gleeble Hot-Tensile test. However, the uneven temperature distribution in the specimen during the test will definitely affect the accuracy of the measured mechanical properties. To acquire accurate high-temperature mechanical properties, studies of the temperature distribution in the tensile specimen and its effect on mechanical properties is significant. In this paper, A three-dimensional electromagnetic model and a three-dimensional Joule thermal model for the as-cast steel specimen in Hot-Tensile test were built to study current density and temperature distribution in the specimen. It was found that temperature difference between surface and center of steel specimen reaches 62 °C, when the test temperature is 1300 °C. An average absolute difference method was used to calibrate the inhomogeneous distribution of temperature. Compared with the original test, the difference of the tensile strength between the calibrated and original test decreased from 26 to 10 MPa with test temperature increasing from 800 °C to 1300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J. Brimacombe and K. Sorimachi: Metall. Trans. B., 1977, vol. 8, pp. 489-505.

    Article  Google Scholar 

  2. B. Böttger, M. Apel, B. Santillana, and D. Eskin: Metall. Mater. Trans. A., 2013, vol. 44, pp. 3765-77.

    Article  Google Scholar 

  3. A.H. Bui and V.H. Nguyen: J. Met. Mater. Miner., 2020, vol. 30, pp. 80–85.

  4. M. Merklein and J. Lechler: J. Mater. Process. Technol., 2006, vol. 177, pp. 452-55.

    Article  CAS  Google Scholar 

  5. X. Qiang, F. Bijlaard, and H. Kolstein: Steel Construction, 2012, vol. 30, pp. 73-79.

    Google Scholar 

  6. A.A. Kuril, G.J. Ram, and S.R. Bakshi: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 2029–36.

  7. V. Euser, D. Williamson, K. Clarke, K. Findley, J. Speer, and A. Clarke: Metall. Mater. Trans. B., 2019, vol. 50, pp. 3654-62.

    Article  Google Scholar 

  8. Z. Chen, P. Nash, and Y. Zhang: Metall. Mater. Trans. B., 2019, vol. 50, pp. 1718-28.

    Article  Google Scholar 

  9. D.J. Seol, Y.M. Won, T. Yeo, K.H. Oh, J.K. Park, and C.H. Yim: ISIJ Int., 1999, vol. 39, pp. 91-98.

    Article  CAS  Google Scholar 

  10. C. Zhang, M. Bellet, M. Bobadilla, H. Shen, and B. Liu: Metall. Mater. Trans. A., 2010, vol. 41, pp. 2304-17.

    Article  CAS  Google Scholar 

  11. S. Brown, J. James, and J. Spittle: Modell. Simul. Mater. Sci. Eng., 1997, vol. 5, pp. 539-48.

    Article  Google Scholar 

  12. J. Spittle, S. Brown, J. James, and R. Evans: Proc. 7th Int. Symposium on Physical Simulation of Casting, 1997, pp. 93–99.

  13. S. Semiatin, D. Mahaffey, N. Levkulich, and O. Senkov: Metall. Mater. Trans. A., 2017, vol. 48, pp. 5357-67.

    Article  Google Scholar 

  14. H. Ye, C. Basaran, and D. Hopkins: Appl. Phys. Lett., 2003, vol. 82, pp. 1045-47.

    Article  CAS  Google Scholar 

  15. J. Martins, J. Alves, D. Neto, M. Oliveira, and L. Menezes: Int. J. Adv. Manuf. Tech., 2016, vol. 83, pp. 897-909.

    Article  Google Scholar 

  16. D. Mattis and J. Bardeen: Phys. Rev., 1958, vol. 111, pp. 412-17.

    Article  Google Scholar 

  17. M. van Rooyen and T.H. Becker: J. Strain Anal. Eng. Des., 2018, vol. 53, pp. 117-29.

    Article  Google Scholar 

  18. L. Zheng, T. Lee, N. Liu, Z. Li, G. Zhang, J. Mi, and P. Grant: Mater. Des., 2017, vol. 117, pp. 157-17.

    Article  CAS  Google Scholar 

  19. C. Zhang, M. Bellet, M. Bobadilla, H. Shen, and B. Liu: Inverse Probl. Sci. Eng., 2011, vol. 19, pp. 485-508.

    Article  CAS  Google Scholar 

  20. M. Hojny: Modeling Steel Deformation in the Semi-Solid State, 2nd ed., Springer International Publishing AG, Switzerland, 2018, pp. 103-16.

    Book  Google Scholar 

  21. D.J. Seol, Y.M. Won, K.H. Oh, Y.C. Shin, and C.H. Yim: ISIJ Int., 2000, vol. 40, pp. 356-63.

    Article  CAS  Google Scholar 

  22. M.N. Ãzisik, M.N. Özısık, and M.N. Özışık: Heat Conduction, Wiley, New York, 1993, p. 145.

  23. M. Greconici, G. Madescu, and M. Mot: Skin effect analysis in a free space conductor, Facta Univ. Ser. Electron. Energet., 2010, vol. 23, pp. 207–15.

  24. H.A. Wheeler: Proc. IRE, 1942, vol. 30, pp. 412–24.

  25. D. Clarke and J. Hemp: Flow Meas. Instrum., 2009, vol. 20, pp. 22-37.

    Article  CAS  Google Scholar 

  26. Z. Nie, Y. Hou, J. Deng, P.A. Ramachandran, S. Wen, and W. Ma: Appl. Therm. Eng., 2017, vol. 125, pp. 856-69.

    Article  CAS  Google Scholar 

  27. C. Yan, W. Li, X. Di, Z. Xue, S. Bai, and F. Liu: J. Cent. South Univ. Technol., 2007, vol. 14, pp. 319-23.

    Article  CAS  Google Scholar 

  28. X. Li: Numerical Simulation and Experimental Verification of JOULE Effect in Gleeble Thermo-Mechanical Simulating Test (Thesis), Shanghai Jiao Tong University, Shanghai, 2012, pp. 31–33.

  29. Y. Zhou, Y. Yang, G. Yang, D. Yin, Y. Qin, and J. Liu: Manuf. Rev., 2015, vol. 2, pp. 18.

    Google Scholar 

  30. X. Xie, S. Yu, M. Long, D. Chen, H. Duan, H. Chen, H. Fan, and T. Liu: Numer. Heat Transfer, Part A, 2017, vol. 72, pp. 642-56.

    Article  CAS  Google Scholar 

  31. M. Peet, H. Hasan, and H. Bhadeshia: Int. J. Heat Mass Transfer, 2011, vol. 54, pp. 2602-08.

    Article  CAS  Google Scholar 

  32. G. Chester and A. Thellung: Proceedings of the Physical Society, 1961, vol. 77, pp. 1005-13.

    Article  CAS  Google Scholar 

  33. E. Kardoulaki, J. Lin, D. Balint, and D. Farrugia: J. Strain Anal. Eng. Des., 2014, vol. 49, pp. 521-32.

    Article  Google Scholar 

  34. M. Faisal, E. El-Shenawy, and M.A. Taha: Mater. Sci. Appl., 2017, vol. 8, pp. 273-280.

    CAS  Google Scholar 

  35. E. Gorkunov, S.Y. Mitropolskaya, D. Vichuzhanin, and E. Tueva: Physical Mesomechanics, 2011, vol. 14, pp. 85-93.

    Article  Google Scholar 

  36. N. Takahashi, M. Morishita, D. Miyagi, and M. Nakano: IEEE Trans. Magn., 2010, vol. 46, pp. 548-51.

    Article  Google Scholar 

  37. M. Ouadah, O. Touhami, R. Ibtiouen, A. Bouzida, S. Bouyegh, D. Allou, and A. Haddad: Proceedings of Engineering and Technology, 2017, vol. 17, pp. 97-101.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (NSFC) for financial support (Project Nos. 51874059, 51874060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mujun Long or Dengfu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 1, 2020; accepted January 1, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Long, M., Chen, D. et al. Temperature Distribution in the As-Cast Steel Specimen During Gleeble Hot-Tensile Test and Its Effect on High-Temperature Mechanical Properties. Metall Mater Trans B 52, 1228–1242 (2021). https://doi.org/10.1007/s11663-021-02071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02071-3

Navigation