Skip to main content
Log in

Sandstone Geochemistry of Dalbuing Formation of Yinkiong Group, Arunachal Pradesh, NE India: Implications for Provenance, Paleoweathering and Tectonic Settings

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

This study presents the results of geochemical investigations of early to middle Eocene sandstones belonging to the Dalbuing Formation of Yinkiong Group, occurring in and around Yamne valley of Arunachal Pradesh. Geochemically, these sandstones are wacke and lithic arenite, with the former being dominant than the other. The various indices of weathering (CIA, CIW, PIA) suggest intense chemical weathering of the source rock. Moreover, the average Th/U ratio (mean = 6.97) also indicates intense chemical weathering in the source areas and derivation of the sediments from the upper continental crust. However, the plot of chemical index of alteration (CIA) vs. index of compositional variability (ICV) shows that most of the sandstones are geochemically mature and were derived from intensively weathered source rock. The sandstones were deposited dominantly in semi-arid condition. Tectonically, these sandstones are found to have affinities towards both the passive margin (PM) and the active continental margin (ACM) settings, which further implies existence of multiple tectonic activities during their deposition. Moreover, the elemental ratios of Eu/Eu*, La/Sc, Th/Sc, La/Co, Th/Co, Th/Cr and chondrite normalized REE distribution pattern suggest their derivation from sources of felsic composition. The high ratio of Zr/Sc indicates the enrichment of heavy mineral zircon supplemented by sediment recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharyya, S. K. (1998) Thrust tectonics and evolution of domes and the syntaxis in Eastern Himalaya, India. Jour. Nepal Geol. Soc., v.18, pp.1–17.

    Google Scholar 

  • Akinlua, A., Ngola, A., Fadipe, O.A. and Adekola, S.A. (2015) Petrography and geochemistry of sandstone samples of Vischkuil Formation, Karoo Supergroup, South Africa. Jour. Petrol. Explor. Produc. Tech., v.6, pp.159–167.

    Article  Google Scholar 

  • Babu, K. (2017) Geochemical characteristics of sandstones from Cretaceous Garudamangalam area of Ariyalur, Tamilnadu, India: Implications of provenance and tectonic setting. Jour. Earth System Sci., v.126(45), pp.1–13.

    Google Scholar 

  • Baiyegunhi, C., Liu, K. and Gwavava, O. (2017) Geochemistry of sandstones and shales from the Ecca Group, Karoo Supergroup, in the Eastern Cape Province of South Africa: Implications for provenance, weathering and tectonic setting. Open Geoscience, v.9, pp.340–360.

    Google Scholar 

  • Banerjee, A. and Banerjee, D.M. (2010) Modal analysis and geochemistry of two sandstones of the Bhander Group (Late Neoproterozoic) in parts of the Central Indian Vindhyan Basin and their bearing on the provenance and tectonics. Jour. Earth System Sci., v.119(6), pp.825–839.

    Article  Google Scholar 

  • Baruah, H., Lahkar, A.D., Bhagabati, B., Kar, R. and Das, P.K. (2017) Geochemistry of Tikak Parbat Sandstones and Tipam Sandstones occurring in and around Dilli Area, Sivasagar District, Assam, India. Open Jour. Geol., v.7, pp.1238–1267.

    Article  Google Scholar 

  • Bhatia, M.R. (1983) Plate tectonics and geochemical composition of sandstones. Jour. Geol., v.91(6), pp.611–627.

    Article  Google Scholar 

  • Bhatia, M.R. and Crook, K.A.W. (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol., v.92, pp.181–193.

    Article  Google Scholar 

  • Blatt, H., Middleton, G.V. and Murray, R.C. (1980) Origin of Sedimentary Rocks. New Jersey: Prentice-Hall Inc.

    Google Scholar 

  • Braun, I., Raith, M. and Kumar, G.R.R. (1996) Dehydration-Melting Phenomena in Leptynitic Gneisses and the Generation of Leucogranites: A Case Study from the Kerala Khondalite Belt, Southern India. Jour. Petrol., v.37(6), pp.1285–1305.

    Article  Google Scholar 

  • Brookfield, M.E. (1993) The Himalayan passive margin from Precambrian to Cretaceous times. Sediment. Geol., v.84, pp.1–35.

    Article  Google Scholar 

  • Burg, J. P., Davy, P., Oberli, F., Seward, D., Diao, Z. and Meir, M. (1997) Exhumation during crustal folding in the Namche-Barwa syntaxis. Terra Nova, v.9, pp.53–56.

    Article  Google Scholar 

  • Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, v.104, pp.1–37.

    Article  Google Scholar 

  • Condie, K.C., Noll, P. D. and Conway, C. M. (1992) Geochemical and detrital mode evidence for two sources of early Proterozoic sedimentary rocks from the Tonto Basin Supergroup, Central Arizona. Sediment. Geol., v.77, pp.51–76.

    Article  Google Scholar 

  • Cox, R., Lowe, D.R. and Cullers, R.L. (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta, v.59(14), pp.2919–2940.

    Article  Google Scholar 

  • Crook, K. A. W. (1974) Lithogenesis and geotectonics: The significance of compositional variation in flysch arenites (graywackes). Soc. Econ. Paleontol. Min. Spec. Publ., v.19, pp.304–310.

    Google Scholar 

  • Cullers, R.L., Basu, A., and Suttner, L.J. (1988) Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chem. Geol., v.70, pp.335–348.

    Article  Google Scholar 

  • Cullers, R.L. (1994) The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim. Cosmochim Acta, v.58, pp.4955–4972.

    Article  Google Scholar 

  • Cullers, R.L. (1995) The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to tertiary age in the Wet Mountains region, Colorado, U.S.A. Chem. Geol., v.123, pp.107–131.

    Article  Google Scholar 

  • Cullers, R.L. (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, v.51, pp.181–203.

    Article  Google Scholar 

  • Dickinson, W.R. (1988) Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. New Perspectives in Basin Analysis, Springer, pp.3–25.

  • Eker, C.S. (2012) Petrography and Geochemistry of Eocene Sandstones from Eastern Pontides(NE Turkey): Implications for Source Area Weathering, Provenance and Tectonic Setting. Geochem. Internat., v.50(8), pp.683–701.

    Article  Google Scholar 

  • Ekwenye, O.C., Nichols, G. and Mode, A.W. (2015) Sedimentary petrology and provenance interpretation of the sandstone lithofacies of Paleogene strata, south-eastern Nigeria. Jour. African Earth Sci., v.109, pp.239–262.

    Article  Google Scholar 

  • Fedo, C.M., Nesbitt, H.W. and Young, G.M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for palaeoweathering conditions and provenance. Geology, v.23(10), pp.921–924.

    Article  Google Scholar 

  • Feng, R. and Kerrich, R. (1990) Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstones belt, Canada: Implications for provenance and tectonic setting. Geochim. Cosmochim Acta, v.54, pp.1061–1081.

    Article  Google Scholar 

  • Ferdous, N. and Farazi, A.H. (2016) Geochemistry of Tertiary sandstones from southwest Sarawak, Malaysia: Implications for provenance and tectonic setting. Acta Geochim, v.35(3), pp.294–308.

    Article  Google Scholar 

  • Hajalilou, B., Ashrafi, N., & Sharifi, J. (2016) Mineralogy and Geochemistry of the Upper Paleocene Shales from Goouydaraq-Goouradaraq, East Azarbaijan, NW Iran. Open Jour. Geol., v.6, pp.1096–1117.

    Article  Google Scholar 

  • Harnois, L. (1988) The CIW Index: A New Chemical Index of Weathering. Sediment. Geol., v.55, pp.319–322.

    Article  Google Scholar 

  • Hayashi, K., Fujisawa, H., Holland, H. and Ohmoto, H. (1997) Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta, v.61(19), pp.4115–4137.

    Article  Google Scholar 

  • Herron, M.M. (1988) Geochemical classification of terrigenous sands and shales from core or log data. Jour. Sediment. Petrol., v.58(5), pp.820–829.

    Google Scholar 

  • Holland, H.D. (1978) The Chemistry of the Atmosphere and the Oceans. New York: John Wiley.

    Google Scholar 

  • Jafarzadeh, M. and Hosseini-Barzi, M. (2008) Petrography and geochemistry of Ahwaz Sandstone Member of Asmari Formation, Zagros, Iran: Implications on provenance and tectonic setting. Revista Mexicana de Ciencias Geologicas, v.25(2), pp.247–260.

    Google Scholar 

  • Johnsson, M.J., Stallard, R.F. and Mcade, R.H. (1988) First-cycle quartz arenites in the Orinoco River basin, Venezuela and Columbia. Jour. Geol., v.96, pp.263–277.

    Article  Google Scholar 

  • Kesari, G.K., Gupta, G.D. and Prakash, H.S.M. (2010) Geology and Mineral Resources of Arunachal Pradesh. Geol. Surv. India.

  • Khan, T. and Khan, M.S. (2016) Geochemistry of the Sandstones of Punagarh Basin: Implications for Two Source Terranes and Arabian-Nubian Connection of Aravalli Craton? Jour. Geol. Soc. India, v.88(3), pp.366–386.

    Article  Google Scholar 

  • Khan, T., Sarma, D.S., Somasekhar, V. and Ramanaiah, S. (2019) Geochemistry of the Palaeoproterozoic quartzites of Lower Cuddapah Supergroup, South India: Implications for the palaeoweathering, provenance and crustal evolution. Geol. Jour., pp.1–25.

  • Kumar, G. (1997) Geology of Arunachal Pradesh. Geological Society of India, Bangalore, 217p.

  • McLennan, S.M. (1989) Rare Earth Elements in Sedimentary Rocks. Influence of provenance and sedimentary processes. Rev. Mineral., v.21, pp.169–200.

    Google Scholar 

  • McLennan, S. M., Hemming, S., McDaniel, D.K. and Hanson, G. N. (1993) Geochemical approaches to sedimentation, provenance, and tectonics. Geol. Soc. Amer., Spec. Paper, v.284, pp.21–40.

    Google Scholar 

  • McLennan, S.M., Hemming, S.R., Taylor, S.R. and Eriksson, K.A. (1995) Early Proterozoic crustal evolution: Geochemical and Nd-Pb isotope evidence from metasedimentary rocks, southwestern North America. Geochim. Cosmochim. Acta, v.59(6), pp.1153–1177.

    Article  Google Scholar 

  • Nance, W. B., & Taylor, S. R. (1976) Rare earth element patterns and crustal evolution-I. Australian post-Archean sedimentary rocks. Geochim. Cosmochim. Acta, v.40, pp.1539–1551.

    Article  Google Scholar 

  • Nance, W.B. and Taylor, S.R. (1977) Rare earth element patterns and crustal evolution-II. Archean sedimentary rocks from Kalgoorlie, Australia. Geochim. Cosmochim. Acta, v.41, pp.225–231.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, v.299, pp.715–717.

    Article  Google Scholar 

  • Pettijohn, F.J., Potter, P.E. and Siever, R. (1972) Sand and Sandstones. NewYork: Springer-Verlag.

    Google Scholar 

  • Roddaz, M., Viers, J., Brusset, S., Baby, P. and Herail, G. (2006) Controls on weathering and provenance in the Amazonian foreland basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments. Chem. Geol., v.226, pp.31–65.

    Article  Google Scholar 

  • Rollinson, H. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation (1st ed.). UK: Prentice Hall.

    Google Scholar 

  • Roser, B.P. and Korsch, R.J. (1988) Provenance signature of sandstonemudstone suites determined using discrimination function analysis of major-element data. Chem. Geol., v.67, pp.119–139.

    Article  Google Scholar 

  • Singh, T. and Singh, P. (1983) Late Early Eocene larger foraminiferids from Siang district, Arunachal Pradesh, India and their geological significance. Geoscience Jour., v.IV(2), pp.141–156.

    Google Scholar 

  • Singh, S. (1993) Geology and tectonics of the eastern syntaxial bend, Arunachal Himalaya. Jour. Himalayan Geol., v.4, pp.149–163.

    Google Scholar 

  • Singh, A.K. and Singh, R.K.B. (2012) Petrogenetic evolution of the felsic and mafic volcanic suite in the Siang window of Eastern Himalaya, Northeast India. Geoscience Frontiers, v.3(5), pp.613–634.

    Article  Google Scholar 

  • Subrahmanyam, C. and Chand, S. (2006) Evolution of the passive continental margins of India — A geophysical appraisal. Gondwana Res., v.10, pp.167–178.

    Article  Google Scholar 

  • Suttner, L.J. and Dutta, P.K. (1986) Alluvial Sandstone Composition and Palaeoclimate; I, Framework Mineralogy. Jour. Sediment. Petrol., v.56, pp.329–345.

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M. (1985) The continental crust: Its composition and evolution. London: Blackwell.

    Google Scholar 

  • Tripathi, C., Gaur, R.K. and Singh, S. (1981) A note on the occurrence of Nummulites in East Siang district, Arunachal Pradesh. Indian Minerals, v.35(1), pp.36–38.

    Google Scholar 

  • Tripathi, C. and Mamgain, V.D. (1986) The larger foraminifera from the Yingkiong Formation (Early Eocene) of East Siang district, Arunachal Pradesh. Jour. Pal. Soc. India, v.31, pp.76–84.

    Google Scholar 

  • Valdiya, K.S. (2001) Himalaya: Emergence and Evolution. Hyderabad: Universities Press (India) Limited.

    Google Scholar 

  • Von Eynatten, H. (2004) Statistical modelling of compositional trends in sediments. Sediment. Geol., v.172, pp.251–268.

    Google Scholar 

  • Wadia, D.N. (1931) The syntaxis of Northwest Himalaya: its rocks, tectonics and orogeny. Rec. Geol. Surv. India, v.6, pp.189–220.

    Google Scholar 

  • Wronkiewicz, D.J. and Condie, K.C. (1987) Geochemistry of Archaean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochim. Cosmochim. Acta, v.51(9), pp.2401–2416.

    Article  Google Scholar 

  • Young, G.M. and Nesbitt, H.W. (1998) Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. Jour. Sed. Res., v.68(3), pp.448–455.

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Head, Department of Geological Sciences, Gauhati University, Assam for allowing us to avail the departmental facilities and the Department of Science & Technology, Govt. of India, New Delhi for supporting infrastructural facility of the department in the form of Grant-in-aid General under 2016–2017 FIST Program (Ref. C.Dy.No. 5862/IFD/2016–2017). We thankfully acknowledge the Wadia Institute of Himalayan Geology, Dehradun for giving major oxide analysis results and the National Geophysical Research Institute, Hyderabad for giving trace elements as well as REE analysis results. The authors are also grateful to Tavheed Khan of NGRI, Hyderabad for his constructive suggestions for preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash Gogoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudoi, N.M., Gogoi, B. & Dehingia, P. Sandstone Geochemistry of Dalbuing Formation of Yinkiong Group, Arunachal Pradesh, NE India: Implications for Provenance, Paleoweathering and Tectonic Settings. J Geol Soc India 97, 297–307 (2021). https://doi.org/10.1007/s12594-021-1681-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1681-7

Navigation