Skip to main content
Log in

Number of Solitons Generated from an Intense Initial Pulse at Asymptotically Large Time

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A method to derive formulas for the number of solitons into which a sufficiently intense initial pulse in the form of a localized simple wave evolves at asymptotically large time has been proposed on the basis of the Gurevich–Pitaevskii theorem on the number of oscillations entering the dispersive shock wave region. In application to integrable equations, this method reproduces Karpman-type formulas following from the semiclassical approximation for a linear spectral problem associated with the considered equation. It has been shown on particular examples that expressions previously obtained by means of the formal continuation of the solution of modulation Whitham equations to the dispersionless region of the wave can be derived in the case of nonintegrable equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons. The Inverse Scattering Method (Nauka, Moscow, 1980; Springer, US, 1984).

  2. S. C. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967).

    Article  ADS  Google Scholar 

  3. V. I. Karpman, Phys. Lett. A 25, 708 (1967).

    Article  ADS  Google Scholar 

  4. V. I. Karpman, Non-Linear Waves in Dispersive Media (Nauka, Moscow, 1973; Elsevier, Amsterdam, 1975).

  5. A. V. Gurevich and L. P. Pitaevskii, Sov. Phys. JETP 38, 291 (1973).

    ADS  Google Scholar 

  6. G. B. Whitham, Proc. R. Soc. London 283, 238 (1965).

    ADS  Google Scholar 

  7. A. V. Gurevich, A. L. Krylov, N. G. Mazur, and G. A. El’, Sov. Phys. Dokl. 37, 198 (1992).

    ADS  Google Scholar 

  8. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Fizmatlit, Moscow, 2001; Pergamon, New York, 1987).

  9. A. V. Gurevich, A. L. Krylov, and N. G. Mazur, Sov. Phys. JETP 68, 966 (1989).

    Google Scholar 

  10. A. V. Gurevich and A. R. Meshcherkin, Sov. Phys. JETP 60, 732 (1984).

    Google Scholar 

  11. C. Lanczos, The Variational Principles of Mechanics, Dover Books on Physics (Dover, New York, 1986).

    MATH  Google Scholar 

  12. G. A. El, Chaos 15, 037103 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  13. G. A. El, R. H. J. Grimshaw, and N. F. Smyth, Phys. Fluids 18, 027104 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  14. G. A. El, A. Gammal, E. G. Khamis, R. A. Kraenkel, and A. M. Kamchatnov, Phys. Rev. A 76, 053813 (2007).

    Article  ADS  Google Scholar 

  15. J. G. Esler and J. D. Pearce, J. Fluid Mech. 667, 555 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  16. N. K. Lowman and M. A. Hoefer, J. Fluid Mech. 718, 524 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  17. M. A. Hoefer, J. Nonlin. Sci. 24, 525 (2014).

    Google Scholar 

  18. T. Congy, A. M. Kamchatnov, and N. Pavloff, SciPostPhys. 1, 006 (2016).

  19. M. A. Hoefer, G. A. El, and A. M. Kamchatnov, SIAM J. Appl. Math. 77, 1352 (2017).

    Article  MathSciNet  Google Scholar 

  20. X. An, T. R. Marchant, and N. F. Smyth, Proc. R. Soc. London, Ser. A 474, 0278 (2018).

  21. T. Congy, G. A. El, and M. A. Hoefer, J. Fluid Mech. 875, 1145 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  22. M. D. Maiden, D. V. Anderson, N. A. Franco, G. A. El, and M. A. Hoefer, Phys. Rev. Lett. 120, 144101 (2018).

    Article  ADS  Google Scholar 

  23. A. M. Kamchatnov, Chaos 30, 123148 (2020).

  24. A. V. Gurevich and L. P. Pitaevskii, Sov. Phys. JETP 66, 490 (1987).

    Google Scholar 

  25. A. M. Kamchatnov, Phys. Usp. 191, 52 (2021).https://doi.org/10.3367/UFNr.2020.08.038815

  26. P. D. Lax and C. D. Livermore, Commun. Pure Appl. Math. 36, 253 (1984);

    Article  Google Scholar 

  27. Commun. Pure Appl. Math. 36, 571 (1983);

  28. Commun. Pure Appl. Math. 36, 809 (1983).

  29. N. G. Mazur, Theor. Math. Phys. 106, 35 (1996).

    Article  Google Scholar 

  30. E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov, Phys. Rep. 142, 103 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  31. A. M. Kamchatnov, Phys. Rev. E 99, 012203 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  32. A. M. Kamchatnov, Theor. Math. Phys. 202, 363 (2020).

    Article  Google Scholar 

  33. E. A. Kuznetsov, Phys. Lett. A 101, 314 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  34. D. McKenzie, J. Petrol. 25, 713 (1984).

    Article  ADS  Google Scholar 

  35. A. C. Fowler, Geophys. Astrophys. Fluid Dyn. 33, 63 (1985).

    Article  ADS  Google Scholar 

  36. D. R. Scott and D. J. Stevenson, Geophys. Res. Lett. 11, 1161 (1984).

    Article  ADS  Google Scholar 

  37. D. R. Scott and D. J. Stevenson, Nature (London, U.K.) 319, 759 (1986).

    Article  ADS  Google Scholar 

  38. P. Olson and U. Christensen, J. Geophys. Res. B 91, 6367 (1986).

    Article  ADS  Google Scholar 

  39. F. Serre, La Houille Blanche 8, 374 (1953).

    Article  Google Scholar 

  40. C. H. Su and C. S. Gardner, J. Math. Phys. 10, 536 (1969).

    Article  ADS  Google Scholar 

  41. A. E. Green and P. M. Naghdi, J. Fluid Mech. 78, 237 (1976).

    Article  ADS  Google Scholar 

  42. S. K. Ivanov and A. M. Kamchatnov, Phys. Fluids 31, 057102 (2019).

    Article  ADS  Google Scholar 

  43. G. A. El, R. H. J. Grimshaw, and N. F. Smyth, Phys. D (Amsterdam, Neth.) 237, 2423 (2008).

Download references

ACKNOWLEDGMENTS

I am grateful to L.P. Pitaevskii and G.A. El for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kamchatnov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamchatnov, A.M. Number of Solitons Generated from an Intense Initial Pulse at Asymptotically Large Time. J. Exp. Theor. Phys. 132, 63–72 (2021). https://doi.org/10.1134/S106377612101012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612101012X

Navigation