Skip to main content
Log in

Dynamic Ionization and Auger Transitions in the Quasi-Molecule during Ne+–Ne Collisions

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The exponential component of the electron spectrum during Ne–Ne collisions is shown to be associated with the electron transitions from the autoionization term to the continuum. The characteristics of this term have been determined. The exponential shape of the spectrum is explained by the absence of interference between the transition amplitudes as the particles come close together and fly apart due to a high transition probability. For Auger transitions in the quasi-molecule we have determined the dependence of the mean Auger transition energy on the reached internuclear distance, which agrees well with the results of energy level calculations for the Ne–Ne system, and the dependence of the weighted mean Auger transition probability on the observed electron energy Ee. We show that the transition probability decreases significantly with increasing Ee as the internuclear distance decreases, apparently, due to a decrease in the overlap integrals of the wave functions for the interacting electrons. Our analysis allows a coherent picture of ionization in collisions of intermediate-mass ions with keV energies to be formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. P. Yu. Babenko, A. N. Zinoviev, and A. P. Shergin, Nucl. Instrum. Methods Phys. Res., Sect. B 354, 142 (2015).

    Google Scholar 

  2. R. K. Cacak and T. Jorgensen, Phys. Rev. A 2, 1322 (1970).

    Article  ADS  Google Scholar 

  3. P. H. Woerlee, Yu. S. Gordeev, H. de Waard, et al., J. Phys. B: At. Mol. Phys. 14, 527 (1981).

    Article  ADS  Google Scholar 

  4. E. A. Solov’ev, Sov. Phys. JETP 54, 893 (1981).

    Google Scholar 

  5. S. Yu. Ovchinnikov and E. A. Solov’ev, Sov. Phys. JETP 64, 280 (1986);

    Google Scholar 

  6. S. Yu. Ovchinnikov and E. A. Solov’ev, Sov. Phys. JETP 63, 538 (1986).

    Google Scholar 

  7. S. Yu. Ovchinnikov, G. N. Ogurtsov, J. H. Macek, and Yu. S. Gordeev, Phys. Rep. 389, 169 (2004).

    Article  Google Scholar 

  8. E. A. Solov’ev, New Approaches in Quantum Physics (Fizmatlit, Moscow, 2019) [in Russian].

    Google Scholar 

  9. G. N. Ogurtsov, V. M. Mikoushkin, S. Yu. Ovchinnikov, and J. H. Macek, Phys. Rev. A 74, 032706 (2006).

    Article  Google Scholar 

  10. S. Yu. Ovchinnikov, J. H. Macek, and V. M. Mikoushkin, Phys. Rev. A 84, 032706 (2016).

    ADS  Google Scholar 

  11. S. Yu. Ovchinnikov and J. H. Macek, Nucl. Instrum. Methods Phys. Res., Sect. B 241, 78 (2005).

    Google Scholar 

  12. J. H. Macek and S. Yu. Ovchinnikov, Phys. Rev. Lett. 104, 033201 (2010).

    Article  ADS  Google Scholar 

  13. L. Ph. H. Schmidt, C. Goil, D. Metz, et al., Phys. Rev. Lett. 162, 083201 (2014).

    Article  ADS  Google Scholar 

  14. V. V. Afrosimov, Yu. S. Gordeev, A. N. Zinov’ev, et al., JETP Lett. 24, 28 (1976).

    ADS  Google Scholar 

  15. A. Z. Devdariani, V. N. Ostrovskii, and Y. N. Sebyakin, Sov. Phys. JETP 46, 215 (1977).

    ADS  Google Scholar 

  16. V. V. Afrosimov, G. G. Meskhi, N. N. Tsarev, and A. P. Shergin, Sov. Phys. JETP 57, 263 (1983).

    Google Scholar 

  17. V. R. Asatryan and A. P. Shergin, JETP Lett. 44, 584 (1986).

    ADS  Google Scholar 

  18. A. P. Shergin, Doctoral (Phys. Math.) Dissertation (Ioffe Phys. Tech. Inst. Acad. Sci. USSR, Leningrad, 1987).

  19. Yu. N. Demkov, Sov. Phys. JETP 18, 138 (1964).

    Google Scholar 

  20. E. N. Fuls, P. R. Jones, F. P. Ziemba, and E. Everhart, Phys. Rev. 107, 704 (1957).

    Article  ADS  Google Scholar 

  21. P. Yu. Babenko, A. N. Zinoviev, and A. P. Shergin, Nucl. Instrum. Methods Phys. Res., Sect. B 354, 142 (2015).

    Google Scholar 

  22. G. N. Ogurtsov, A. G. Kroupyshev, M. G. Sargsyan, and Yu. S. Gordeev, Phys. Rev. A 53, 2391 (1996).

    Article  ADS  Google Scholar 

  23. A. N. Zinoviev, S. Yu. Ovchinnikov, and Yu. S. Gordeev, in Proceedings of the 12th Conference on Physics of Electronic and Atomic Collisions ICPEAC, Gatlinburg, 1981, p. 900.

  24. M. Ya. Amusia, M. Yu. Kuchiev, S. A. Sheinerman, and S. I. Sheftel, J. Phys. B: At. Mol. Phys. 10, L535 (1977).

    Article  ADS  Google Scholar 

  25. R. Guillemin, L. Gerchikov, and S. Sheinerman, Phys. Rev. A 99, 063409 (2019).

    Article  ADS  Google Scholar 

  26. A. A. Borovik and G. N. Ogurtsov, J. Phys. B: At. Mol. Phys. 42, 105202 (2009).

    Article  ADS  Google Scholar 

  27. A. A. Borovik and G. N. Ogurtsov, J. Phys. B: At. Mol. Phys. 43, 165203 (2010).

    Article  ADS  Google Scholar 

  28. R. B. Barker and H. W. Berry, Phys. Rev. 151, 19 (1966).

    Article  ADS  Google Scholar 

  29. R. C. Amme and P. O. Haugsjaa, Phys. Rev. 177, 230 (1969).

    Article  ADS  Google Scholar 

  30. H. B. Gilbody and J. B. Hasted, Proc. R. Soc. A 240, 382 (1957);

    ADS  Google Scholar 

  31. H. B. Gilbody, J. B. Hasted, J. V. Ireland, et al., Proc. R. Soc. A 274, 40 (1963).

    ADS  Google Scholar 

  32. V. M. Galitskii, E. E. Nikitin, and B. M. Smirnov, The Theory of Collisions of Atomic Particles (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  33. A. N. Zinov’ev, Tech. Phys. 53, 13 (2008).

    Article  Google Scholar 

  34. J. Eichler, U. Wille, B. Fastrup, and K. Taulbjerg, Phys. Rev. A 14, 707 (1976).

    Article  ADS  Google Scholar 

  35. A. N. Zinoviev, Nucl. Instrum. Methods Phys. Res., Sect. B 269, 943 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Zinoviev.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinoviev, A.N., Babenko, P.Y. & Shergin, A.P. Dynamic Ionization and Auger Transitions in the Quasi-Molecule during Ne+–Ne Collisions. J. Exp. Theor. Phys. 132, 45–55 (2021). https://doi.org/10.1134/S1063776121010076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121010076

Navigation