Skip to main content
Log in

Phonon Spectroscopy of the Schottky-Like Low-Energy Paramagnetic Excitations in Garnet Solid Solution Crystals

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The interaction of weakly nonequilibrium phonons with the low-energy paramagnetic excitations of the rare-earth ions of the yttrium series in rare-earth garnet solid solutions is studied at liquid-helium temperatures. The interaction of nonequilibrium phonons with the low-energy excitations of Ho3+ and Tb3+, which are caused by local electric fields in a crystal lattice, is experimentally investigated. In the row of Kraemrs ions (where the nature of low-energy excitations is caused by the splitting of the ground level of a paramagnetic ion due to the local magnetic fields of neighboring ions), interaction in the nonequilibrium phonon–low-energy excitation system is only detected in the Er-containing solid solutions and is absent in the structures containing Gd3+, Dy3+, and Yb3+ rare-earth ions. In the two-level system model, the efficiency of interaction and the transport characteristics of thermal phonons are shown to depend on the type of rare-earth ion, the energy and spectral features of two-level systems, the moments of electrons in the 4f shell, and spin–lattice relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. S. Nagata, H. Sasaki, K. Suzuki, et al., J. Phys. Chem. Sol. 62, 1123 (2001).

    Article  ADS  Google Scholar 

  2. K. Kamazawa, D. Louca, R. Morinaga, et al., Phys. Rev. B 78, 064412 (2008).

    Article  ADS  Google Scholar 

  3. E. V. Shevchenko, E. V. Charnaya, E. N. Khazanov, A. V. Taranov, and A. S. Bugaev, Phys. Solid State 59, 733 (2017).

    Article  ADS  Google Scholar 

  4. E. V. Shevchenko, E. V. Charnaya, M. K. Lee, et al., Phys. Lett. A 381, 330 (2017).

    Article  Google Scholar 

  5. E. I. Salamatov, A. V. Taranov, E. N. Khazanov, E. V. Charnaya and E. V. Shevchenko, J. Exp. Theor. Phys. 127, 705 (2018).

    Article  ADS  Google Scholar 

  6. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford Univ., London, 1970), Vol. 1.

    Google Scholar 

  7. V. M. Mikushev and E. V. Charnaya, Nuclear Magnetic Resonance in Solids (SPb. Univ., St. Petersburg, 1995) [in Russian].

  8. E. N. Khazanov, A. V. Taranov, E. V. Shevchenko, and E. V. Charnaya, J. Exp. Theor. Phys. 121, 48 (2015).

    Article  ADS  Google Scholar 

  9. A. A. Kaminskii, Laser Crystals (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  10. E. V. Shevchenko, E. V. Charnaya, E. N. Khazanov, et al., J. Alloys Compd. 717, 183 (2017).

    Article  Google Scholar 

  11. E. V. Charnaya, E. V. Shevchenko, E. N. Khazanov, A. V. Taranov and A. M. Ulyashev, J. Commun. Technol. Electron. 64, 811 (2019).

    Article  Google Scholar 

  12. S. N. Ivanov, A. G. Kozorezov, A. V. Taranov, et al., Sov. Phys. JETP 73, 880 (1991).

    Google Scholar 

  13. S. N. Ivanov, E. N. Khazanov, T. Paszkiewicz, et al., Z. Phys. B 99, 535 (1996).

    Article  ADS  Google Scholar 

  14. S. N. Ivanov and E. N. Khazanov, Sov. Phys. JETP 61, 172 (1985).

    Google Scholar 

  15. I. B. Levinson, JETP Lett. 37, 190 (1983).

    ADS  Google Scholar 

  16. D. V. Kazakovtsev and I. B. Levinson, JETP Lett. 27, 181 (1978).

    ADS  Google Scholar 

  17. A. Kushino, Y. Aoki, N. Y. Yamasaki, et al., J. Appl. Phys. 90, 5812 (2001).

    Article  ADS  Google Scholar 

  18. E. I. Salamatov, Phys. Solid State 44, 978 (2002).

    Article  ADS  Google Scholar 

  19. S. N. Ivanov, E. N. Khazanov, A. G. Kozorezov, et al., Phys. Lett. A 159, 279 (1991).

    Article  ADS  Google Scholar 

  20. G. A. Slack and D. W. Oliver, Phys. Rev. B 4, 592 (1971).

    Article  ADS  Google Scholar 

  21. I. E. Lezova, O. V. Karban’, A. V. Taranov, E. N. Khazanov, and E. V. Charnaya, J. Exp. Theor. Phys. 130, 76 (2020).

    Article  ADS  Google Scholar 

  22. S. N. Ivanov, A. G. Kozorezov, E. N. Khazanov, et al., Sov. Phys. JETP 73, 880 (1991).

    Google Scholar 

  23. J. B. Gruber, D. K. Sardar, B. Zandi, et al., J. Appl. Phys. 93, 3137 (2003).

    Article  ADS  Google Scholar 

  24. Yu. I. Voron’ko and A. A. Sobol’, Tr. FIAN 98, 41 (1977).

    Google Scholar 

  25. I. E. Lezova, E. I. Salamatov, A. V. Taranov, E. N. Khazanov, E. V. Charnaya and E. V. Shevchenko, J. Exp. Theor. Phys. 129, 849 (2019).

    Article  ADS  Google Scholar 

  26. E. I. Salamatov, A. V. Taranov, and E. N. Khazanov, J. Exp. Theor. Phys. 121, 267 (2015).

    Article  ADS  Google Scholar 

  27. G. H. Larson and C. D. Jeffries, Phys. Rev. B 141, 461 (1966).

    Article  ADS  Google Scholar 

  28. V. A. Atsarkin, V. V. Demidov, G. A. Vasneva, et al., Phys. Rev. B 61, R14944 (R) (2000).

  29. J. C. Gill, Proc. Phys. Soc. 82, 1066 (1963).

    Article  ADS  Google Scholar 

  30. S. N. Ivanov, E. N. Khazanov, and A. V. Taranov, JETP Lett. 40, 743 (1984).

    ADS  Google Scholar 

  31. P. Y. Efitsenko, E. N. Hazanov, S. N. Ivanov, et al., Phys. Lett. A 147, 135 (1990).

    Article  ADS  Google Scholar 

Download references

Funding

This work was performed in terms of a state assignment and was supported in part by the Russian Foundation for Basic Research, project no. 18-07-00191.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Taranov or E. N. Khazanov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taranov, A.V., Khazanov, E.N. & Charnaya, E.V. Phonon Spectroscopy of the Schottky-Like Low-Energy Paramagnetic Excitations in Garnet Solid Solution Crystals. J. Exp. Theor. Phys. 132, 94–101 (2021). https://doi.org/10.1134/S1063776121010052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121010052

Navigation