Skip to main content
Log in

Estimation of the Critical Point Parameters of the Liquid–Vapor Phase Transition of Metals Using Experiments on the Isentropic Expansion of Shock-Compressed Porous Samples

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The isentropic expansion of shock-compressed porous metals (Cu, W, Nb) are experimentally studied, and the experimental results are used to determine their thermodynamic parameters and electrical conductivity. These results allow us to conclude that some porous metals after shock compression and expansion have a two-phase structure. The presence of an additional phase at the isentropic expansion of these metals significantly changes the character of evaporation and the critical point parameters of the liquid–vapor phase transition that are estimated using experiments on the isentropic expansion of shock-compressed porous metals. In addition, the formation of the two-phase structure explains the large difference between the critical point parameters estimated by different methods for a large group of metals (U, W, V, Co, Mo, Ta, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. I. Iosilevsky and V. Gryaznov, J. Nucl. Mater. 344, 30 (2005).

    Article  ADS  Google Scholar 

  2. V. E. Fortov and I. T. Yakubov, Physics of Non-Ideal Plasma (Energoatomizdat, Moscow, 1994; CRC, Boca Raton, FL, 1989).

  3. M. V. Zhernokletov, V. N. Zubarev, R. F. Trunin, and V. E. Fortov, Experimental Data on Shock Compressibility and Adiabatic Expansion of Condensed Substances at High Energy Densities (IKhFCh RAN, Chernogolovka, 1996) [in Russian].

  4. L. V. Al’tshuller, A. V. Bushman, and M. V. Zhernokletov, Sov. Phys. JETP 51, 373 (1980).

    ADS  Google Scholar 

  5. L. F. Gudarenko, O. N. Gushchina, M. V. Zhernokletov, A. B. Medvedev, and G. V. Simakov, Teplofiz. Vys. Temp. 38, 1185 (2000).

    Google Scholar 

  6. S. V. Koval’, N. I. Kuskova, and S. I. Tkachenko, High Temp. 35, 863 (1997).

    Google Scholar 

  7. A. D. Rakhel, A. Kloss, and H. Hess, Int. J. Thermophys. 23, 1369 (2002).

    Article  Google Scholar 

  8. H. Hess, A. Kloss, A. Rakhel, and H. Schneidenbach, Int. J. Thermophys. 20, 1279 (1999).

    Article  Google Scholar 

  9. W. Fucke and U. Seydel, High Temp.–High Press. 12, 419 (1980).

    Google Scholar 

  10. V. K. Gryaznov, Encyclopedy of Low-Temperature Plasma, Introductory Volume, Ed. by V. E. Fortov (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  11. A. N. Emelyanov, D. V. Shakhray, and A. A. Golyshev, High Temp.–High Press. 46, 381 (2017).

    Google Scholar 

  12. V. V. Kim, Cand. Sci. (Phys. Math.) Dissertation (Inst. Appl. Chem. Phys. RAS, Chernogolovka, 2005).

  13. V. E. Fortov and I. V. Lomonosov, Open Plasma Phys. J. 3, 122 (2010).

    Google Scholar 

  14. I. V. Lomonosov, Doctoral (Phys. Math.) Dissertation (Inst. Appl. Chem. Phys. RAS, Chernogolovka, 2000).

  15. A. W. De Silva and G. B. Vunni, Phys. Rev. E 83, 037402 (2011).

    Article  ADS  Google Scholar 

  16. A. Kloss, T. Motzke, R. Grossjohann, and H. Hess, Phys. Rev. E 54, 5851 (1996).

    Article  ADS  Google Scholar 

  17. A. N. Emelyanov, A. A. Pyalling, and V. Ya. Ternovoi, Int. J. Thermophys. 26, 1985 (2005).

    Article  ADS  Google Scholar 

  18. A. N. Emelyanov, High Temp. High Press. 44, 483 (2015).

    Google Scholar 

  19. N. A. Inogamov, A. Yu. Dem’yanov, and E. E. Son, Hydrodynamics of Mixing (MFTI, Dolgoprudnyi, 1999) [in Russian].

  20. S. A. Bordzilovskii, S. M. Karakhanov, and V. F. Lobanov, Gorenie Vzryv 23, 132 (1987).

    Google Scholar 

  21. A. A. Pyalling, V. K. Gryaznov, S. V. Kvitov, D. N. Nikolaev, V. Ya. Ternovoi, A. S. Filimonov, V. E. Fortov, M. Dornik, D. H. H. Hoffmann, and C. Stockl, High Temp. 36, 29 (1998).

    Google Scholar 

  22. M. V. Zhernokletov, A. B. Medvedev, and V. G. Simakov, Khim. Fiz. 14, 49 (1995).

    Google Scholar 

  23. M. V. Zhernokletov, High Temp. 36, 214 (1998).

    Google Scholar 

  24. D. V. Minakov, A. M. Paramonov, and P. R. Levashov, Phys. Rev. B 97, 024205 (2018).

    Article  ADS  Google Scholar 

  25. R. Reid and T. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1958).

    Google Scholar 

  26. C. Ronchi, I. L. Iosilevski, and E. Yakub, Equation of State of Uranium Dioxide (Springer, London, 2004).

    Book  Google Scholar 

  27. V. Ya. Ternovoi, V. E. Fortov, A. S. Filimonov, A. A. Pyalling, D. N. Nikolaev, and Y. E. Gordon, High Temp.–High Press. 34, 73 (2002).

    Article  Google Scholar 

  28. D. A. Young and B. J. Alder, Phys. Rev. A 3, 364 (1971).

    Article  ADS  Google Scholar 

  29. E. M. Apfelbaum and V. S. Vorob’ev, J. Phys. Chem. B 113, 3521 (2009).

    Article  Google Scholar 

  30. V. P. Skripov, Metastable Liquids (Nauka, Moscow, 1972; Wiley, New York, 1974).

Download references

Funding

This work was performed in terms of state assignment no. 0089-2019-0001 (Experimental and Theoretical Investigation of the Thermophysical Characteristics and Processes in a Substance in Extremal States) within the framework of the program Condensed Matter and Plasma at High Energy Densities and the project Energetics of Extremal States of Substance of the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Emel’yanov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emel’yanov, A.N., Shakhray, D.V. & Kim, V.V. Estimation of the Critical Point Parameters of the Liquid–Vapor Phase Transition of Metals Using Experiments on the Isentropic Expansion of Shock-Compressed Porous Samples. J. Exp. Theor. Phys. 132, 102–109 (2021). https://doi.org/10.1134/S1063776121010015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121010015

Navigation