Skip to main content
Log in

Low-cost nanoparticulate oxidation catalysts for the removal of azo and anthraquinic dyes

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to test the activity of Mn ferrite, hematin-Mn ferrite and colloidal maghemite in decomposition of Orange II (O-II) and Alizarin Red S (ARS) in model aqueous solutions.

Methods

Color removal was explored at room temperature using magnetic stirring with and without a magnetic bar, taking advantage of the solids’ magnetism. Decomposition of H2O2 was also studied separately and as radicals provider in dye decomposition. Catalyst/dye solution was fixed at 10 mg/4 mL. pH and dye concentration were variable. Absorbance was measured during 120 min by UV-Vis. Reuse of catalysts was also performed.

Results

Azo dyes such as O-II are more resistant to oxidative removal using hydrogen peroxide than anthraquinone-like ARS. CITMD5 reduced ARS absorbance up to 71.9% when dye was less than 250 mg/L. HEM-Mn-MAG completely decolorized a 62.5 mg/L O-II solution at pH 11 while CITMD5 reached half of that conversion under the same conditions. The highest color removal in O-II/ARS mixtures was obtained with HEM-Mn-MAG, 40% absorbance reduction in 2 h. Mn-MAG is not active to remove O-II in presence of hydrogen peroxide in the 3–9 pH range at rt.

Conclusions

The high activity of Mn-MAG in hydrogen peroxide decomposition may be assigned to the combination of Mn+2/Mn+3 and Fe+2/Fe+3, because the MnOx is active in the decomposition of hydrogen peroxide. Mn-MAG can be reused, preserving high activity in this reaction. Mn-based magnetic nanoparticles should be considered as inexpensive materials to treat textile wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shokrollahi H. A review of the magnetic properties, synthesis methods and applications of maghemite. J Magn Magn Mater. 2017;426:74–81.

    Article  CAS  Google Scholar 

  2. Zhang Y, Zhou M. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J Hazard Mater. Elsevier B.V. 2019;362:436–50.

    Article  CAS  Google Scholar 

  3. Chen Y, Lin J, Chen Z. Remediation of water contaminated with diesel oil using a coupled process: biological degradation followed by heterogeneous Fenton-like oxidation. Chemosphere. Elsevier Ltd. 2017;183:286–93.

    Article  CAS  Google Scholar 

  4. Heinz OL, Cunha MAA, Amorim JS, Barbosa-Dekker AM, Dekker RFH, Barreto-Rodrigues M. Combined fungal and photo-oxidative Fenton processes for the treatment of wood-laminate industrial waste effluent. J Hazard Mater. Elsevier B.V. 2019;379:120790.

  5. Zebardast HR, Rogak S, Asselin E. Kinetics of decomposition of hydrogen peroxide on the surface of magnetite at high temperature. J Electroanal Chem. Elsevier B.V. 2013;705:30–6.

    Article  CAS  Google Scholar 

  6. Gao L, Fan K, Yan X. Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics. Ivyspring International Publisher. 2017;7:3207–27.

    Article  CAS  Google Scholar 

  7. Jauhar S, Singhal S, Dhiman M. Manganese substituted cobalt ferrites as efficient catalysts for H2O2 assisted degradation of cationic and anionic dyes: their synthesis and characterization. Appl Catal A Gen. Elsevier. 2014;486:210–8.

    Article  CAS  Google Scholar 

  8. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. Nature Publishing Group. 2007;2:577–83.

    Article  CAS  Google Scholar 

  9. Ghaly A, Ananthashankar R, Alhattab M, Ramakrishnan V. Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol. 2014;5:182.

    Google Scholar 

  10. Alipour M, Vosoughi M, Mokhtari SA, Sadeghi H, Rashtbari Y, Shirmardi M, et al. Optimising the basic violet 16 adsorption from aqueous solutions by magnetic graphene oxide using the response surface model based on the Box–Behnken design. Int J Environ Anal Chem [Internet]. Taylor and Francis Ltd.; 2019 [cited 2021 Jan 3]; Available from: https://www.tandfonline.com/doi/abs/10.1080/03067319.2019.1671378

  11. Shirmardi M, Mahvi AH, Mesdaghinia A, Nasseri S, Nabizadeh R. Adsorption of acid red18 dye from aqueous solution using single-wall carbon nanotubes: kinetic and equilibrium. Desalin Water Treat [Internet]. Desalination Publications; 2013 [cited 2021 Jan 3];51:6507–6516. Available from: https://doi.org/10.1080/19443994.2013.793915

  12. Afshin S, Rashtbari Y, Shirmardi M, Vosoughi M, Hamzehzadeh A. Adsorption of Basic Violet 16 dye from aqueous solution onto mucilaginous seeds of Salvia sclarea: kinetics and isotherms studies. Desalin Water Treat [Internet]. 2019 [cited 2021 Jan 3]; 161:365–375. Available from: www.deswater.com

  13. Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – a review. Appl Catal B Environ. Elsevier. 2015;176:249–65.

    Article  Google Scholar 

  14. Horst MF, Coral DF, Fernández van Raap MB, Alvarez M, Lassalle V. Hybrid nanomaterials based on gum Arabic and magnetite for hyperthermia treatments. Mater Sci Eng C. 2017;74:443–50.

    Article  CAS  Google Scholar 

  15. Azcona P, Zysler R, Lassalle V. Simple and novel strategies to achieve shape and size control of magnetite nanoparticles intended for biomedical applications. Colloids Surf A Physicochem Eng Asp. 2016;504:320–30.

    Article  CAS  Google Scholar 

  16. Nicolás P. Síntesis y caracterización de partículas magéticas para su aplicación en biotecnología [Internet]. Universidad Nacional del Sur; 2017. Available from: http://repositoriodigital.uns.edu.ar/handle/123456789/3580

  17. Córdoba A. Catalizadores enzimáticos y biomiméticos soportados para la eliminación de colorantes modelo de soluciones acuosas. Universidad Nacional de Córdoba; 2015.

  18. Perez De Berti IO, Cagnoli MV, Pecchi G, Alessandrini JL, Stewart SJ, Bengoa JF, et al. Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Nanotechnology. 2013;24:175601.

    Article  CAS  Google Scholar 

  19. Taboada E, Rodríguez E, Roig A, Oró J, Roch A, Muller RN. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T 1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir. 2007;23:4583–8.

    Article  CAS  Google Scholar 

  20. Pirillo S, Pedroni V, Rueda E, Luján FM. Elimination of dyes from aqueous solutions using iron oxides and chitosan as adsorbents: a comparative study. Quim Nova SBQ. 2009;32:1239–44.

    Article  CAS  Google Scholar 

  21. Pirillo S, Ferreira ML, Rueda EH. The effect of pH in the adsorption of alizarin and Eriochrome blue black R onto iron oxides. J Hazard Mater. Elsevier. 2009;168:168–78.

    Article  CAS  Google Scholar 

  22. Nicolás P. Síntesis y caracterización de partículas magéticas para su aplicación en biotecnología. Universidad Nacional del Sur; 2017.

  23. Inchaurrondo N, Maestre A, Žerjav G, Pintar A, Ramos C, Haure P. Screening of catalytic activity of natural iron-bearing materials towards the catalytic wet peroxide oxidation of Orange II. J Environ Chem Eng. Elsevier Ltd. 2018;6:2027–40.

    Article  CAS  Google Scholar 

  24. Zhong Y, Liang X, Tan W, Zhong Y, He H, Zhu J, Yuan P, Jiang Z. A comparative study about the effects of isomorphous substitution of transition metals (Ti, Cr, Mn, Co and Ni) on the UV/Fenton catalytic activity of magnetite. J Mol Catal A Chem. Elsevier. 2013;372:29–34.

    Article  CAS  Google Scholar 

  25. Magario I, García Einschlag FS, Rueda EH, Zygadlo J, Ferreira ML. Mechanisms of radical generation in the removal of phenol derivatives and pigments using different Fe-based catalytic systems. J Mol Catal A Chem. Elsevier. 2012;352:1–20.

    Article  CAS  Google Scholar 

  26. Voinov MA, Pagán JOS, Morrison E, Smirnova TI, Smirnov AI. Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc Am Chem Soc. 2011;133:35–41.

    Article  CAS  Google Scholar 

  27. Huang G-X, Wang C-Y, Yang C-W, Guo P-C, Yu H-Q. Degradation of bisphenol a by peroxymonosulfate catalytically activated with Mn 1.8 Fe 1.2 O 4 nanospheres: synergism between Mn and Fe. Environ Sci Technol Am Chem Soc. 2017;51:12611–8.

    Article  CAS  Google Scholar 

  28. Tehrani-Bagha AR, Gharagozlou M, Emami F. Catalytic wet peroxide oxidation of a reactive dye by magnetic copper ferrite nanoparticles. J Environ Chem Eng. Elsevier. 2016;4:1530–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of CONICET, UNS and the ANPCyT (PICT 0932-2015). The authors acknowledge Dr. Gustavo Marchetti for the kind gift of the CITMD5 material. The authors acknowledge the personal communication of Dr. M. L. Kremer 2018, which was very useful to the discussion of the present manuscript.

Funding

This research was financed by CONICET and ANPCYT (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Nicolás.

Ethics declarations

Conflicts of interest/competing interests

The authors declare no conflict.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 912 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolás, P., López Pugni, G.S., Horst, F. et al. Low-cost nanoparticulate oxidation catalysts for the removal of azo and anthraquinic dyes. J Environ Health Sci Engineer 19, 721–731 (2021). https://doi.org/10.1007/s40201-021-00640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00640-x

Keywords

Navigation