Skip to main content
Log in

Water wave propagation over an infinite step in the presence of a thin vertical barrier

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Problems of water wave propagation over an infinite step in the presence of a thin vertical barrier of four different geometrical configurations are investigated in this paper. For each configuration of the barrier, the problem is reduced to solving an integral equation or a coupled integral equation of first kind involving horizontal component of velocity below or above the barrier and above the step. The integral equations are solved employing Galerkin approximation in terms of simple polynomials multiplied by appropriate weight functions whose forms are dictated by the edge conditions at the corner of the step and at the submerged end(s) of the barrier. The reflection and transmission coefficients are then computed and depicted graphically against the wave number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ursell F (1947) The effect of a fixed barrier on surface wave in deep water. Proc Camb Philos Soc 43:374–382

    Article  MathSciNet  Google Scholar 

  2. Levine H, Rodemich E (1958) Scattering of surface waves on an ideal fluid. Math and Stat Lab Stanford Univ, Tech Rep No, p 78

  3. Williams WE (1966) Note on the scattering of water waves by a vertical barrier. Proc Camb Philos Soc 62:507–509

    Article  MathSciNet  Google Scholar 

  4. Goswami SK (1982) Scattering of water waves by a partially immersed fixed vertical barrier in water of finite depth. Bull Cal Math Soc 74:110–116

    MATH  Google Scholar 

  5. Smith CM (1983) Some problems in linear water wave theory. University of Bristol. Ph.D. thesis

  6. Losada IJ, Losada MA, Roldán AJ (1992) Propagation of oblique incident waves past rigid vertical thin barriers. Appl Ocean Res 14:191–199

    Article  Google Scholar 

  7. Evans DV (1970) Diffraction of Water waves by a submerged vertical plate. J Fluid Mech 40:433–451

    Article  Google Scholar 

  8. Goswami SK (1983) Scattering of surface waves by a submerged fixed vertical plate in water of finite depth. J Indian Inst Sci 64B:79–88

    MATH  Google Scholar 

  9. Parsons NF, Martin PA (1992) Scattering of water waves by submerged plates using hypersingular integral equations. Appl Ocean Res 14:313–321

    Article  Google Scholar 

  10. Yueh Ching-Yun, Tsaur Deng-How (1999) Wave scattering by submerged vertical plate-type breakwater using composite BEM. Coast Eng J 41:65–83

    Article  Google Scholar 

  11. Newman JN (1965) Propagation of water waves over an infinite step. J Fluid Mech 23:399–415

    Article  MathSciNet  Google Scholar 

  12. Havelock TH (1929) Forced surface waves on water. Phillos Mag 8:569–576

    Article  Google Scholar 

  13. Rhee JP (1997) On the transmission of water waves over a shelf. Appl Ocean Res 19:161–169

    Article  Google Scholar 

  14. Ray S, De S, Mandal BN (2018) Note on water wave scattering by a step. Pac J Appl Math 9:221–230

    MathSciNet  Google Scholar 

  15. Evans DV, Morris CAN (1972) The effect of a fixed vertical barrier on obliquely incident surface waves in deep water. J. Inst Math Appl 9:198–204

    Article  Google Scholar 

  16. Porter R, Evans DV (1995) Complementary approximations to wave scattering by vertical barriers. J Fluid Mech 294:155–180

    Article  MathSciNet  Google Scholar 

  17. Evans DV, Fernyhough M (1995) Edge waves along periodic coastlines. Part 2. J Fluid Mech 297:307–325

    Article  MathSciNet  Google Scholar 

  18. Li AJ, Liu Y, Li HJ (2015) Accurate solutions to water wave scattering by vertical thin porous barriers. Math Prob Eng 985731

  19. Meng ZJ, Cheng H, Ma LD, Cheng YM (2018) The hybrid element-free Galerkin method for three-dimensional wave propagation problems. Int J Num Methods Eng 117:15–37

    Article  MathSciNet  Google Scholar 

  20. Gupta S, Gayen R (2019) Water wave interaction with dual asymmetric non-uniform permeable plates using integral equations. Appl Math Comp 346:436–451

    Article  MathSciNet  Google Scholar 

  21. Roy R, De S, Mandal BN (2019) Water wave scattering by multiple thin vertical barriers. Appl Math Comp 355:458–481

    Article  MathSciNet  Google Scholar 

  22. Forbes LK (1988) Surface waves of large amplitude beneath an elastic sheet Part 2 Galerkin solution. J Fluid Mech 188:491–508

    Article  MathSciNet  Google Scholar 

  23. Hocking GC, Forbes LK (1991) A note on the flow induced by a line sink beneath a free surface. Austral Math Soc Ser B32:251–260

    Article  MathSciNet  Google Scholar 

  24. Vanden-Broeck Jean-Marc, Parau EI (2011) Two-dimensional generalized solitary waves and periodic waves under an ice sheet. Philos Trans R Soc A 369:2957–2972

    Article  MathSciNet  Google Scholar 

  25. Morris CAN (1975) A variational approach to an unsymmetric water wave scattering problem. J Eng Math 9:291–300

    Article  Google Scholar 

  26. Roy R, Basu U, Mandal BN (2016) Oblique water wave scattering by two unequal vertical barriers. J Eng Math 97:119–133

    Article  MathSciNet  Google Scholar 

  27. Dhillon H, Banerjea S, Mandal BN (2016) Water wave scattering by a finite dock over a step type bottom. Ocean Eng 113:1–10

    Article  Google Scholar 

  28. Mandal BN, Chakrabarti A (2000) Water wave scattering by barriers. WIT Press, Southampton

    MATH  Google Scholar 

  29. Mandal BN, De S (2015) Water wave scattering. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the two reviewers for their comments and suggestions to revise the paper in the present form and in particular to the reviewer who provided the references [22, 23] and [24]. SR thanks CSIR (File No. 09/028(1018)/2017-EMR-I), New Delhi, for providing financial assistance. This work is also supported by SERB, New Delhi, through the research project No. EMR/2016/005315.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 A: Expansion of water wave potentials in different regions

For the case of incidence of waves from the finite depth water region, use of Havelock’s [12] expansion for water wave potential produces

$$\begin{aligned} \phi _{1}(x,y)= & {} \left\{ \begin{array}{lr} \left( \mathrm{e}^{\mathrm{i}k_{0}x}+R_{1}\mathrm{e}^{-\mathrm{i}k_{0}x}\right) I_{0}(y)+\sum _{n=1}^{\infty }A_{n}I_{n}(y)\mathrm{e}^{k_{n}x} ~\quad \text{ for }~x<0,~0<y<h,\\ T_{1}\mathrm{e}^{-Ky+\mathrm{i}Kx}+\int _{0}^{\infty }A(k)S(k,y)\mathrm{e}^{-kx}\mathrm{d}k\quad \quad \quad \quad ~~~\text{ for }~x>0,~0<y<\infty ; \end{array} \right. \end{aligned}$$
(A.1)
$$\begin{aligned} \phi _{2}(x,y)= & {} \left\{ \begin{array}{lr} \left( \mathrm{e}^{\mathrm{i}k_{0}x}+R_{2}\mathrm{e}^{-\mathrm{i}k_{0}x}\right) I_{0}(y)+\sum _{n=1}^{\infty }B_{n}I_{n}(y)\mathrm{e}^{k_{n}x} ~\text{ for }~x<-b,~0<y<h,\\ \\ \left( C_{0}\cos k_{0}x+D_{0}\sin k_{0}x\right) I_{0}(y)+\sum _{n=1}^{\infty }\left( C_{n}\cosh k_{n}x+D_{n}\sinh k_{n}x\right) I_{n}(y) \\ ~\text{ for }~-b<x<0,~0<y<h,\\ \\ T_{2}\mathrm{e}^{-Ky+\mathrm{i}Kx}+\int _{0}^{\infty }B(k)S(k,y)\mathrm{e}^{-kx}\mathrm{d}k~~~\quad \quad \quad \text{ for }~x>0,~0<y<\infty ; \end{array} \right. \end{aligned}$$
(A.2)
$$\begin{aligned} \phi _{3}(x,y)= & {} \left\{ \begin{array}{lr} \left( \mathrm{e}^{\mathrm{i}k_{0}x}+R_{3}\mathrm{e}^{-\mathrm{i}k_{0}x}\right) I_{0}(y)+\sum _{n=1}^{\infty }E_{n}I_{n}(y)\mathrm{e}^{k_{n}x} ~\text{ for }~x<0,~0<y<h,\\ \\ \left( F_{0}\mathrm{e}^{\mathrm{i}Kx}x+G_{0}\mathrm{e}^{-\mathrm{i}Kx}\right) \mathrm{e}^{-Ky}+\int _{0}^{\infty }\left( F(k)\mathrm{e}^{-kx}x+G(k)\mathrm{e}^{kx}\right) S(k,y)\mathrm{e}^{-kx}\mathrm{d}k\\ ~\text{ for }~0<x<b,~0<y<\infty ,\\ \\ T_{3}\mathrm{e}^{-Ky+\mathrm{i}Kx}+\int _{0}^{\infty }E(k)S(k,y)\mathrm{e}^{-kx}\mathrm{d}k~~~\quad \quad \text{ for }~x>b,~0<y<\infty ; \end{array} \right. \end{aligned}$$
(A.3)
$$\begin{aligned} \phi _{4}(x,y)= & {} \left\{ \begin{array}{lr} \left( \mathrm{e}^{\mathrm{i}k_{0}x}+R_{4}\mathrm{e}^{-\mathrm{i}k_{0}x}\right) I_{0}(y)+\sum _{n=1}^{\infty }H_{n}I_{n}(y)\quad ~\text{ for }~x<0,~0<y<h,\\ \\ T_{4}\mathrm{e}^{-Ky+\mathrm{i}Kx}+\int _{0}^{\infty }H(k)S(k,y)\mathrm{e}^{-kx}\mathrm{d}k~~~\quad \quad \text{ for }~x>0,~0<y<\infty , \end{array} \right. \end{aligned}$$
(A.4)

where \( S(k,y)=k\cos ky-K\sin ky \) and \( k_{n}(n=1,2,\ldots ) \) are the roots of the transcendental equation \(k\tan kh+K=0\),

$$\begin{aligned} I_{n}(y)=\frac{\cos k_{n}(h-y)}{\cos k_{n}h},~~~n=1,2,\ldots , \end{aligned}$$
(A.5)

A(k) , B(k) , E(k) , F(k) , G(k) , H(k) are unknown functions and \( A_{n} \), \( B_{n}\), \( C_{n} \), \( D_{n}\), \( E_{n} \), \( H_{n}~(n=1,2,\ldots ) \), \( C_{0} \), \( D_{0} \), \( F_{0} \), \( G_{0} \) are unknown constants.

For the case of incidence of waves from the deep water region, use of Havelock’s [12] expansion for water wave potential produces

$$\begin{aligned} \phi ^{*}_{1}(x,y)= & {} \left\{ \begin{array}{lr} (\mathrm{e}^{-\mathrm{i}Kx}+R^{*}_{1}\mathrm{e}^{\mathrm{i}Kx})\mathrm{e}^{-Ky}+\int _{0}^{\infty }A^{*}(k)S(k,y)\mathrm{e}^{-kx}\mathrm{d}k~\quad \text{ for }~x>0,~0<y<\infty ,\\ \\ T^{*}_{1}I_{0}(y)\mathrm{e}^{-\mathrm{i}k_{0}x}+\sum _{n=1}^{\infty }A^{*}_{n}I_{n}(y)\mathrm{e}^{k_{n}x}~~~\quad \quad \quad \quad \quad \quad \quad \quad \text{ for }~x<0,~0<y<h; \end{array} \right. \end{aligned}$$
(A.6)
$$\begin{aligned} \phi ^{*}_{2}(x,y)= & {} \left\{ \begin{array}{lr} (\mathrm{e}^{-\mathrm{i}Kx}+R^{*}_{2}\mathrm{e}^{\mathrm{i}Kx})\mathrm{e}^{-Ky}+\int _{0}^{\infty }B^{*}(k)S(k,y)\mathrm{e}^{-kx}\mathrm{d}k~\quad \text{ for }~x>0,~0<y<\infty ,\\ \\ \left( C^{*}_{0}\cos k_{0}x+D^{*}_{0}\sin k_{0}x\right) I_{0}(y)+\sum _{n=1}^{\infty }\left( C^{*}_{n}\cosh k_{n}x+D^{*}_{n}\sinh k_{n}x\right) I_{n}(y) \\ ~\quad \quad \quad \quad \quad \quad \quad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \quad \quad \quad \quad \quad \text{ for }~-b<x<0,~0<y<h,\\ \\ T^{*}_{2}I_{0}(y)\mathrm{e}^{-\mathrm{i}k_{0}x}+\sum _{n=1}^{\infty }B^{*}_{n}I_{n}(y)\mathrm{e}^{k_{n}x}~~~\quad \quad \text{ for }~x<-b,~0<y<h ; \end{array} \right. \end{aligned}$$
(A.7)
$$\begin{aligned} \phi ^{*}_{3}(x,y)= & {} \left\{ \begin{array}{lr} (\mathrm{e}^{-\mathrm{i}Kx}+R^{*}_{3}\mathrm{e}^{\mathrm{i}Kx})\mathrm{e}^{-Ky}+\int _{0}^{\infty }E^{*}(k)S(k,y)\mathrm{e}^{-kx}\mathrm{d}k\quad ~\text{ for }~x>b,~0<y<\infty ,\\ \\ \left( F^{*}_{0}\mathrm{e}^{\mathrm{i}Kx}x+G^{*}_{0}\mathrm{e}^{-\mathrm{i}Kx}\right) \mathrm{e}^{-Ky}+\int _{0}^{\infty }\left( F^{*}(k)\mathrm{e}^{-kx}x+G^{*}(k)\mathrm{e}^{kx}\right) S(k,y)\mathrm{e}^{-kx}\mathrm{d}k\\ ~\text{ for }~0<x<b,~0<y<\infty ,\\ \\ T^{*}_{3}I_{0}(y)\mathrm{e}^{-\mathrm{i}k_{0}x}+\sum _{n=1}^{\infty }E^{*}_{n}I_{n}(y)\mathrm{e}^{k_{n}x}~~~\quad \quad \quad \quad \quad \quad \quad \quad \text{ for }~x<0,~0<y<h; \end{array} \right. \end{aligned}$$
(A.8)
$$\begin{aligned} \phi ^{*}_{4}(x,y)= & {} \left\{ \begin{array}{lr} (\mathrm{e}^{-\mathrm{i}Kx}+R^{*}_{1}\mathrm{e}^{\mathrm{i}Kx})\mathrm{e}^{-Ky}+\int _{0}^{\infty }H^{*}(k)S(k,y)\mathrm{e}^{-kx}\mathrm{d}k~\quad \text{ for }~x>0,~0<y<\infty ,\\ \\ T^{*}_{4}I_{0}(y)\mathrm{e}^{-\mathrm{i}k_{0}x}+\sum _{n=1}^{\infty }H^{*}_{n}I_{n}(y)\mathrm{e}^{k_{n}x}~~~\quad \quad \quad \quad \quad \quad \quad \quad \text{ for }~x<0,~0<y<h . \end{array} \right. \end{aligned}$$
(A.9)

Here \( A^{*}(k) \), \( B^{*}(k) \), \( E^{*}(k) \), \( F^{*}(k) \), \( G^{*}(k) \), \( H^{*}(k) \) are unknown functions and \( A^{*}_{n} \), \( B^{*}_{n}\), \( C^{*}_{n} \), \( D^{*}_{n}\), \( E^{*}_{n} \), \( H^{*}_{n}~(n=1,2,\ldots ) \), \( C^{*}_{0} \), \( D^{*}_{0} \), \( F^{*}_{0} \), \( G^{*}_{0} \) are unknown constants.

1.2 B: Expressions for the reflection and transmission coefficients

1.2.1 Waves incident from the finite depth water region

For the partially immersed barrier occupying the first position shown in figure 1a, let \( f_{1}(y) \) represent the horizontal component of velocity at \( x=0 \), and then

$$\begin{aligned} \phi _{1x}(0_{-},y)=\phi _{1x}(0_{+},y)=f_{1}(y),~~~y\in (0,h), \end{aligned}$$
(B.1)

and \( f_{1}(y)=0 \) for \( 0<y<c \). Also due to the edge condition (2.6),

$$\begin{aligned} f_{1}(y)=\left\{ \begin{array}{lr} O((y-c)^{-1/2})~~\text{ as }~~y\rightarrow c+0,\\ \\ O((h-y)^{-1/3})~~\text{ as }~~y\rightarrow h-0. \end{array}\right. \end{aligned}$$

Use of Havelock inversion formulae (cf. Mandal and Chakrabarti [28]) produces

$$\begin{aligned}&1-R_{1}=\frac{-4\mathrm{i}\cosh k_{0}h}{2k_{0}h+\sinh 2k_{0}h}\int _{c}^{h}f_{1}(u)\cosh k_{0}(h-u)\mathrm{d}u, \end{aligned}$$
(B.2)
$$\begin{aligned}&A_{n}=\frac{4\cos k_{n}h}{2k_{n}h+\sin 2k_{n}h}\int _{c}^{h}f_{1}(u)\cos k_{n}(h-u)\mathrm{d}u, \end{aligned}$$
(B.3)
$$\begin{aligned}&T_{1}=-2\mathrm{i}\int _{c}^{h}f_{1}(u)\mathrm{e}^{-Ku}\mathrm{d}u, \end{aligned}$$
(B.4)
$$\begin{aligned}&A(k)=-\frac{2}{\pi }\frac{1}{k(k^{2}+K^{2})}\int _{c}^{h}f_{1}(u)S(k,u)\mathrm{d}u. \end{aligned}$$
(B.5)

For the partially immersed barrier occupying the positions at \( x=-b \) (Fig. 1b), let \( f_{2}(y) \) represent the horizontal component of velocity at \( x=-b \), and then

$$\begin{aligned} \phi _{2x}(-b_{-},y)=\phi _{2x}(-b_{+},y)=f_{2}(y),~~~y\in (0,h), \end{aligned}$$
(B.6)

and due to the edge condition (2.6),

$$\begin{aligned} f_{2}(y)=O((y-c)^{-1/2})~~\text{ as }~~y\rightarrow c+0 \end{aligned}$$

and \( f_{2}(y)=0 \) for \( 0<y<c \) due to the condition (2.3),

$$\begin{aligned} \phi _{2x}(0_{-},y)=\phi _{2x}(0_{+},y)=f_{3}(y),~~~y\in (0,h), \end{aligned}$$
(B.7)

so that \(f_{3}(y)=O((h-y)^{-1/3})~~\text{ as }~~y\rightarrow h-0\).

For the barrier in Fig. 1c, let

$$\begin{aligned} \phi _{3x}(0_{-},y)=\phi _{3x}(0_{+},y)=f_{4}(y),~~~y\in (0,h), \end{aligned}$$
(B.8)

so that \(f_{4}(y)=O((h-y)^{-1/3})~~\text{ as }~~y\rightarrow h-0\) and let

$$\begin{aligned} \phi _{3x}(b_{-},y)=\phi _{3x}(b_{+},y)=f_{5}(y),~~~y\in (0,\infty ), \end{aligned}$$
(B.9)

so that \( f_{5}(y)=0 \) for \( 0<y<c \) and \(f_{5}(y)=O((y-c)^{-1/3})~~\text{ as }~~y\rightarrow c+0\).

Finally, for the submerged plate (Fig. 1d), let

$$\begin{aligned} \phi _{4x}(0_{-},y)=\phi _{4x}(0_{+},y)=f_{6}(y),~~~y>0, \end{aligned}$$
(B.10)

so that \( f_{6}(y)=0 \) for \( a<y<c \) due to the condition (2.3) and

$$\begin{aligned} f_{6}(y)=\left\{ \begin{array}{lr} O((a-y)^{-1/2})~~\text{ as }~~y\rightarrow a-0,\\ \\ O((y-c)^{-1/2})~~\text{ as }~~y\rightarrow c+0. \end{array}\right. \end{aligned}$$

Applying Havelock’s inversion formulae appropriately, the unknown functions B(k) and unknown constants \( B_{n} \), \( C_{n} \), \( D_{n}(n=1,2,\ldots ) \), \( C_{0} \), \( D_{0} \), \( R_{2} \), \( T_{2} \) involved in the expression for \( \phi _{2}(x,y) \) in (A.2) can be expressed in terms of integrals involving \( f_{2}(y) \) and \( f_{3}(y) \). In particular, \( R_{2} \) and \( T_{2} \) are given by

$$\begin{aligned}&1-R_{2}&=\frac{-4\mathrm{i}\cosh k_{0}h}{2k_{0}h+\sinh 2k_{0}h}\int _{c}^{h}f_{2}(u)\cosh k_{0}(h-u)\mathrm{d}u , \end{aligned}$$
(B.11)
$$\begin{aligned}&T_{2}&=-2\mathrm{i}\int _{0}^{h}f_{3}(u)\mathrm{e}^{-Ku}\mathrm{d}u . \end{aligned}$$
(B.12)

Similarly, applying Havelock’s inversion formulae appropriately the unknown functions E(k) , F(k) , G(k) and unknown constants \( E_{n}~(n=1,2,\ldots ) \), \( F_{0} \), \( G_{0} \), \( R_{3} \), \( T_{3} \) involved in the expression for \( \phi _{3}(x,y) \) in (A.3) can be expressed in terms of integrals involving \( f_{4}(y) \) and \( f_{5}(y) \). In particular, \( R_{3} \) and \( T_{3} \) are given by

$$\begin{aligned}&1-R_{3}&=\frac{-4\mathrm{i}\cosh k_{0}h}{2k_{0}h+\sinh 2k_{0}h}\int _{0}^{h}f_{4}(u)\cosh k_{0}(h-u)\mathrm{d}u , \end{aligned}$$
(B.13)
$$\begin{aligned}&T_{3}&=-2\mathrm{i}\int _{c}^{\infty }f_{5}(u)\mathrm{e}^{-Ku}\mathrm{d}u . \end{aligned}$$
(B.14)

The unknown function H(k) and unknown constant \( H_{n}~(n=1,2,\ldots ) \), \( R_{4} \), \( T_{4} \) involved in the expression for \( \phi _{4}(x,y) \) in (A.4) can be expressed in terms of integrals involving \( f_{6}(y) \). In particular, \( R_{4} \) and \( T_{4} \) are given by

$$\begin{aligned}&1-R_{4}&=\frac{-4\mathrm{i}\cosh k_{0}h}{2k_{0}h+\sinh 2k_{0}h}\int _{(0,a)\cup (c,h)}f_{6}(u)\cosh k_{0}(h-u)\mathrm{d}u , \end{aligned}$$
(B.15)
$$\begin{aligned}&T_{4}&=-2\mathrm{i}\int _{(0,a)\cup (c,h)}f_{6}(u)\mathrm{e}^{-Ku}\mathrm{d}u. \end{aligned}$$
(B.16)

1.2.2 Waves incident from the deep water region

In this case, for the partially immersed barrier at \( x=0 \) (Fig. 2a) the reflection and transmission coefficients can be expressed in terms of \( f^{*}_{1}(y)(=\phi ^{*}_{1x}(0,y),c<y<h) \) as given by

$$\begin{aligned}&1-R^{*}_{1}&=2\mathrm{i}\int _{c}^{h}f^{*}_{1}(u)\mathrm{e}^{-Ku}\mathrm{d}u , \end{aligned}$$
(B.17)
$$\begin{aligned}&T^{*}_{1}&=\frac{4\mathrm{i}\cosh k_{0}h}{2k_{0}h+\sinh 2k_{0}h}\int _{c}^{h}f^{*}_{1}(u)\cosh k_{0}(h-u)\mathrm{d}u . \end{aligned}$$
(B.18)

For the partially immersed barrier at \( x=-b \) (Fig. 2b), the reflection coefficients \( R^{*}_{2} \) can be expressed in terms of \( f^{*}_{2}(y)(=\phi ^{*}_{2x}(0,y),0<y<h) \) as given by

$$\begin{aligned} 1-R^{*}_{2}=2\mathrm{i}\int _{0}^{h}f^{*}_{2}(u)\mathrm{e}^{-Ku}\mathrm{d}u. \end{aligned}$$
(B.19)

and transmission coefficients \( T^{*}_{2} \) can be expressed in terms of \( f^{*}_{3}(y)(=\phi ^{*}_{2x}(-b,y),c<y<h) \) as given by

$$\begin{aligned} T^{*}_{2}=\frac{4\mathrm{i}\cosh k_{0}h}{2k_{0}h+\sinh 2k_{0}h}\int _{c}^{h}f^{*}_{3}(u)\cosh k_{0}(h-u)\mathrm{d}u. \end{aligned}$$
(B.20)

For the partially immersed barrier at \( x=-b \) (Fig. 2c), the reflection coefficients \( R^{*}_{3} \) can be expressed in terms of \( f^{*}_{4}(y)(=\phi ^{*}_{3x}(b,y),c<y<\infty ) \) as given by

$$\begin{aligned} 1-R^{*}_{3}=2\mathrm{i}\int _{c}^{\infty }f^{*}_{4}(u)\mathrm{e}^{-Ku}\mathrm{d}u \end{aligned}$$
(B.21)

and transmission coefficients \( T^{*}_{3} \) can be expressed in terms of \( f^{*}_{5}(y)(=\phi ^{*}_{3x}(0,y),0<y<h) \) as given by

$$\begin{aligned} T^{*}_{3}=\frac{4\mathrm{i}\cosh k_{0}h}{2k_{0}h+\sinh 2k_{0}h}\int _{0}^{h}f^{*}_{5}(u)\cosh k_{0}(h-u)\mathrm{d}u. \end{aligned}$$
(B.22)

For the submerged plate at \( x=0 \) (Fig. 2d), the reflection and transmission coefficients can be expressed in terms of \( f^{*}_{6}(y)(=\phi ^{*}_{4x}(0,y),y\in (0,a)\cup (c,h)) \) as given by

$$\begin{aligned}&1-R^{*}_{4}&=2\mathrm{i}\int _{(0,a)\cup (c,h)}f^{*}_{6}(u)\mathrm{e}^{-Ku}\mathrm{d}u , \end{aligned}$$
(B.23)
$$\begin{aligned}&T^{*}_{4}&=\frac{4\mathrm{i}\cosh k_{0}h}{2k_{0}h+\sinh 2k_{0}h}\int _{(0,a)\cup (c,h)}f^{*}_{6}(u)\cosh k_{0}(h-u)\mathrm{d}u. \end{aligned}$$
(B.24)

It may be noted that \( f^{*}_\mathrm{j}(y) \) satisfies the same conditions as \( f_\mathrm{j}(y)(j=1,2,\ldots 6) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, S., De, S. & Mandal, B.N. Water wave propagation over an infinite step in the presence of a thin vertical barrier. J Eng Math 127, 11 (2021). https://doi.org/10.1007/s10665-021-10105-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10105-7

Keywords

Navigation