Skip to main content
Log in

Solving Fractional Two-Dimensional Nonlinear Partial Volterra Integral Equation by Using Bernoulli Wavelet

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The main aim of this paper is to use two-dimensional Bernoulli wavelet for obtaining the numerical solution of a nonlinear two-dimensional fractional partial Volterra integral equation. To do this, first, we construct the operational matrix of fractional integration as well as derivative of two-dimensional Bernoulli wavelet. Then, by applying the operational matrices and collocation method, we reduce the considered problem to a system of algebraic equations. Moreover, by preparing some theorems, we investigate the convergence analysis of the method. Finally, to show the accuracy and the applicability of the proposed method, we give some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasa S, Benchohra M (2014) Fractional order integral equations of two independent variables. Appl Math Comput 227(7):755–761

    MathSciNet  MATH  Google Scholar 

  • Aghazadeh N, Khajehnasiri AA (2013) Solving nonlinear two-dimensional Volterra integro-differential equations by block-pulse functions. Math Sci 7(13):1–6

    MathSciNet  MATH  Google Scholar 

  • Arikoglu A, Ozkol I (2009) Solution of fractional integro-differential equations by using fractional differential transform method. Chaos Solitons Fractals 40(10):521–529

    Article  MathSciNet  MATH  Google Scholar 

  • Asgari M, Ezzati R (2017) Using operational matrix of two-dimensional Bernstein polynomials for solving two-dimensional integral equations of fractional order. Appl Math Comput 307(27):290–298

    MathSciNet  MATH  Google Scholar 

  • Barikbin Z (2017) Two-dimensional Bernoulli wavelets with satisfier function in the Ritz–Galerkin method for the time fractional diffusion-wave equation with damping. Math Sci 11(8):195–202

    Article  MathSciNet  MATH  Google Scholar 

  • Bazm S, Azimi MR (2015) Numerical solution of a class of nonlinear Volterra integral equations using Bernoulli operational matrix of integration. Acta Univ M Belii Ser Math 23:35–56

    MathSciNet  MATH  Google Scholar 

  • Doha EH, Bhrawy AH, Ezz-Eldien S (2011) A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput Math Appl 62(11):2364–2373

    Article  MathSciNet  MATH  Google Scholar 

  • Ebadian A, Khajehnasiri AA (2014) Block-pulse functions and their applications to solving systems of higher-order nonlinear Volterra integro-differential equations. Electron J Differ Equ 54(8):1–9

    MathSciNet  MATH  Google Scholar 

  • Ebadian A, Rahmani Fazli H, Khajehnasiri AA (2015) Solution of nonlinear fractional diffusion-wave equation by traingular functions. SeMA J 72(15):37–46

    Article  MathSciNet  MATH  Google Scholar 

  • Hesameddini E, Shahbazi M (2018) Hybrid Bernstein Block-Pulse functions for solving system of fractional integro-differential equations. J Comput Appl Math 95(2):644–651

    MathSciNet  Google Scholar 

  • Heydari MH, Hooshmandasl MR, Mohammadi F, Cattani C (2014a) Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations. Commun Nonlinear Sci Numer Simul 19(8):37–48

    Article  MathSciNet  MATH  Google Scholar 

  • Heydari MH, Hooshmandasl MR, Maalek Ghaini FM, Cattani C (2014b) A computational method for solving stochastic Ito-Volterra integral equations based on stochastic operational matrix for generalized hat basis functions. J Comput Phys 270(6):402–415

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang C, Shih YP (1982) Parameter identification via Laguerre polynomials. Int J Syst Sci 13(21):209–217

    Article  MathSciNet  MATH  Google Scholar 

  • Keshavarz E, Ordokhani Y, Razzaghi M (2019a) The Bernoulli wavelets operational matrix of integration and its applications for the solution of linear and nonlinear problems in calculus of variations. Appl Math Comput 351(29):83–98

    MathSciNet  MATH  Google Scholar 

  • Keshavarz E, Ordokhani Y, Razzaghi M (2019b) The Bernoulli wavelets operational matrix of integration and its applications for the solution of linear and nonlinear problems in calculus of variations. Appl Math Comput 351(7):83–98

    MathSciNet  MATH  Google Scholar 

  • Khajehnasiri AA (2016) Numerical solution of nonlinear 2D Volterra–Fredholm integro-differential equations by two-dimensional triangular function. Int J Appl Comput Math 2(5):575–591

    Article  MathSciNet  MATH  Google Scholar 

  • Khajehnasiri AA, Afshar Kermani M, Ezzati R (2020) Chaos in a fractional-order financial system. Int J Math Oper Res 17(22):318–332

    Article  MathSciNet  Google Scholar 

  • Kilicman A, Al Zhour ZA (2007) Kronecker operational matrices for fractional calculus and some applications. Appl Math Comput 187(7):250–265

    MathSciNet  MATH  Google Scholar 

  • Li Y, Zhao Y (2010) Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl Math Comput 216(6):2276–2285

    MathSciNet  MATH  Google Scholar 

  • Mohammad M, Cattani C (2020) A collocation method via the quasi-affine biorthogonal systems for solving weakly singular type of Volterra–Fredholm integral equations. Alex Eng J 59(2):2181–2191

    Article  Google Scholar 

  • Mojahedfar M, Tari Marzabad A (2017) Solving two-dimensional fractional integro-differential equations by legendre wavelets. Bull Iran Math Soc 43(9):2419–2435

    MathSciNet  MATH  Google Scholar 

  • Najafalizadeh S, Ezzati R (2016) Numerical methods for solving two- dimensional nonlinear integral equations of fractional order by using two-dimensional block pulse operational matrix. Appl Math Comput 280(9):46–56

    MathSciNet  MATH  Google Scholar 

  • Paraskevopoulos PN (1985) Legendre series approach to identification and analysis of linear systems. IEEE Trans Autom Control 30(19):585–589

    Article  MathSciNet  MATH  Google Scholar 

  • Rahimkhani P, Ordokhani Y (2018) A numerical scheme based on Bernoulli wavelets and collocation method for solving fractional partial differential equations with Dirichlet boundary conditions. Numer Methods Partial Differ 21(111):34–59

    MATH  Google Scholar 

  • Rahimkhani P, Ordokhani Y, Babolian E (2016) Fractional-order Bernoulli wavelets and their applications. Appl Math Model 40(2):8087–8107

    Article  MathSciNet  MATH  Google Scholar 

  • Rahimkhani P, Ordokhani Y, Babolian E (2017) A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer Algorithms 74(11):223–245

    Article  MathSciNet  MATH  Google Scholar 

  • Rahmani Fazli H, Hassani F, Ebadian A, Khajehnasiri AA (2015) National economies in state-space of fractional-order financial system. Afrika Matematika 10(2):1–12

    MATH  Google Scholar 

  • Rawashdeh E (2006a) Numerical solution of fractional integro-differential equations by collocation method. Appl Math Comput 176(6):1–6

    MathSciNet  MATH  Google Scholar 

  • Rawashdeh EA (2006b) Numerical solution of fractional integro-differential equations by collocation method. Appl Math Comput 176(21):1–6

    MathSciNet  MATH  Google Scholar 

  • Saadatmandi A, Dehghan M (2010) A new operational matrix for solving fractional-order differential equations. Comput Math Appl 59(18):1326–1336

    Article  MathSciNet  MATH  Google Scholar 

  • Saeedi M, Moghadam MM (2011) Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS Wavelets. Commun Nonlinear Sci Numer Simul 16(11):1216–1226

    Article  MathSciNet  MATH  Google Scholar 

  • Schiavane P, Constanda C, Mioduchowski A (2002) Integral methods in science and engineering. Birkhauser, Boston

    Google Scholar 

  • Singh J, Kumar D, Hammouch Z, Atangana A (2018) A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl Math Comput 59(2):504–515

    MathSciNet  MATH  Google Scholar 

  • Wang J, Xu T, Wei Y, Xie J (2018) Numerical simulation for coupled systems of nonlinear fractional order integro-differential equations via wavelets method. Appl Math Comput 324(17):36–50

    MathSciNet  MATH  Google Scholar 

  • Xie j, Huang Q (2017) Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations in two-dimensional spaces based on Block Pulse functions. J Comput Appl Math 317(7):565–572

    Article  MathSciNet  MATH  Google Scholar 

  • Yi M, Huang J (2014) Wavelet operational matrix method for solving fractional differential equations with variable coefficients. Appl Math Comput 230(14):383–394

    MathSciNet  MATH  Google Scholar 

  • Yi M, Huang J, Wei J (2013) Block pulse operational matrix method for solving fractional partial differential equation. Appl Math Comput 221(2013):121–131

    MathSciNet  MATH  Google Scholar 

  • Yoku A, Glbahar S (2019) Numerical solutions with linearization techniques of the fractional Harry Dym equation. Appl Math Nonlinear Sci 4(1):35–42

    Article  MathSciNet  Google Scholar 

  • Zurigat M, Momani S, Alawneh A (2009) Homotoy analysis method for systems of fractional integro-differential equations. Neural Parallel Sci Comput 17(5):169–186

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ezzati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajehnasiri, A.A., Ezzati, R. & Kermani, M.A. Solving Fractional Two-Dimensional Nonlinear Partial Volterra Integral Equation by Using Bernoulli Wavelet. Iran J Sci Technol Trans Sci 45, 983–995 (2021). https://doi.org/10.1007/s40995-021-01078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-021-01078-4

Keywords

Mathematics Subject Classification

Navigation