Skip to main content

Advertisement

Log in

Acceleration of Heat Transfer and Melting Rate of a Phase Change Material by Nanoparticles Addition at Low Concentrations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal analysis of melting process of phase change material in rectangular latent thermal energy storage unit is presented herein. To resolve the low heat transfer rate due to the low thermal conductivity of pure paraffin (the phase change material of this study), the nano-paraffin approach has been numerically investigated. Four nano-metal oxides (Al2O3, MgO, SiO2 and SnO2) with high thermal conductivity are dispersed into the pure paraffin at different concentrations (1 %, 3 % and 5 %, v/v). The adopted mathematical model that has been used to study the mass, momentum, and energy transport processes inside the nano-paraffin systems has been firstly validated by available literature data. The obtained results showed that both heat transfer and solid melting rate are significantly improved in the presence of nanomaterials, with an independent relation to the particles concentration for a long melting time, i.e. up to 10 000 s. However, above 10 000 s, high particles concentration slightly enhanced the liquid fraction. Besides, it is found that the type of particles did not affect appreciably the heat transfer and the solid melting rate. Nevertheless, the enhancing effect of the nano-paraffin system is strongly melting time dependence. For the four investigated metal oxides, the temperature system attained 351 K at 1000 s of operation, whereas that recorded for the pure paraffin at the same time is 345 K, which yields an improvement of 1.7 %. For the same conditions, the liquid fraction passes form 0.04 for pure paraffin to 0.1 for nano-paraffin system, showing 150 % of enhancement in the melting yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A:

Mushy zone constant

Cp:

Specific heat capacity (J/kg K)

d:

Diameter (m)

f:

Liquid fraction of nano-PCM

g:

Gravitational acceleration (m/s2)

K:

Thermal conductivity (W/m K)

KB :

Boltzmann constant

L:

Latent heat capacity (kJ/kg)

P:

Pressure (N/m2)

T:

Temperature (K)

t:

Time (s)

V:

Velocity (m/s)

V:

Volume (m3)

Q:

Heat flux (W/m2)

β:

Thermal expansion coefficient (1/K)

µ:

Dynamic viscosity (kg/m s)

∅:

Volume concentration of nano-particles

ρ:

Density (kg/m3)

i:

Initial

l:

Liquefied phase

s:

Solidified phase

pc:

Phase change

np:

Nano-particles

npcm:

Nano-PCM

ref:

Reference

HTF:

Heat transfer fluid

PCM:

Phase change material

SENS:

Sensible

LAT:

Latent

References

  1. U. Pelay, L. Luo, Y. Fan, D. Stitou, M. Rood, Renew. Sustain. Energy Rev. 79, 82 (2017)

    Article  Google Scholar 

  2. Y. Yuan, N. Zhang, W. Tao, X. Cao, Y. He, Renew. Sustain. Energy Rev. 29, 482 (2014)

    Article  Google Scholar 

  3. B. Buonomo, D. Ercole, O. Manca, and S. Nardini, in Handbook of Thermal Science Engineering, edited by F. A. Kulacki (Springer, Singapore, 2018), pp. 859–883.

  4. A. Kasaeian, L. Bahrami, F. Pourfayaz, E. Khodabandeh, W.M. Yan, Energy Build. 154, 96–112 (2017)

    Article  Google Scholar 

  5. V. Joshi, M.K. Rathod, J. Energy Storage 22, 270 (2019)

    Article  Google Scholar 

  6. P. Zhang, Z.N. Meng, H. Zhu, Y.L. Wang, S.P. Peng, Appl. Energy 185, 1971 (2017)

    Article  Google Scholar 

  7. A.V. Arasu, A.S. Mujumdar, Int. Commun. Heat Mass Transf. 39, 8 (2012)

    Article  Google Scholar 

  8. S. Ebadi, S.H. Tasnim, A.A. Aliabadi, S. Mahmud, Appl. Therm. Eng. 174, 115266 (2020)

    Article  Google Scholar 

  9. M. Mahdavi, S. Tiari, V. Pawar, J. Energy Storage 27, 101086 (2020)

    Article  Google Scholar 

  10. F. Benmoussa, R. Ouzani, A. Benzaoui, H. Benmoussa, Comput. Therm. Sci. 10, 355 (2018)

    Article  Google Scholar 

  11. L. Mishra, A. Sinha, R. Gupta, in Green Build. Sustain. Eng. ed. by H. Drück (Springer, Singapore, 2019), pp. 25–37

    Chapter  Google Scholar 

  12. Z. Khan, Z.A. Khan, P. Sewell, Int. J. Heat Mass Transf. 144, 118619 (2019)

    Article  Google Scholar 

  13. M.K. Rathod, J. Banerjee, Renew. Sustain. Energy Rev. 18, 246 (2013)

    Article  Google Scholar 

  14. Z. Zhang, N. Zhang, J. Peng, X. Fang, X. Gao, Y. Fang, Appl. Energy 91, 426 (2012)

    Article  Google Scholar 

  15. J.M. Mahdi, E.C. Nsofor, J. Energy Storage 20, 529 (2018)

    Article  Google Scholar 

  16. J.M. Mahdi, S. Lohrasbi, D.D. Ganji, E.C. Nsofor, Int. J. Heat Mass Transf. 124, 663 (2018)

    Article  Google Scholar 

  17. M. Kazemi, A. Kianifar, H. Niazmand, J. Therm. Anal. Calorim. 139, 3769 (2020)

    Article  Google Scholar 

  18. M. Bhouri, J. Goyette, B.J. Hardy, D.L. Anton, Int. J. Hydrogen Energy 37, 1551 (2012)

    Article  Google Scholar 

  19. M. S. Mahdi, A. F. Hasan, H. B. Mahood, A. N. Campbell, A. A. Khadom, A. M. em A. Karim, A. O. Sharif, J. Energy Storage 23, 456 (2019).

  20. A.A. Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, A.T. Mohammad, Appl. Therm. Eng. 53, 147 (2013)

    Article  Google Scholar 

  21. S. Ebadi, S.H. Tasnim, A.A. Aliabadi, S. Mahmud, Energy Convers. Manag. 166, 241 (2018)

    Article  Google Scholar 

  22. M. Sheikholeslami, Z. Li, A. Shafee, Int. J. Heat Mass Transf. 127, 665 (2018)

    Article  Google Scholar 

  23. C.Y. Zhao, W. Lu, Y. Tian, Sol. Energy 84, 1402 (2010)

    Article  ADS  Google Scholar 

  24. D. Zhou, C.Y. Zhao, Appl. Therm. Eng. 31, 970 (2011)

    Article  Google Scholar 

  25. S.S. Sundarram, W. Li, Appl. Therm. Eng. 64, 147 (2014)

    Article  Google Scholar 

  26. M. Gorzin, M.J. Hosseini, M. Rahimi, R. Bahrampoury, J. Energy Storage 22, 88 (2019)

    Article  Google Scholar 

  27. S. Harikrishnan, K. Deepak, S. Kalaiselvam, J. Therm. Anal. Calorim. 115, 1563 (2014)

    Article  Google Scholar 

  28. J.M. Khodadadi, S.F. Hosseinizadeh, Int. Commun. Heat Mass Transf. 34, 534 (2007)

    Article  Google Scholar 

  29. S.H. Tasnim, R. Hossain, S. Mahmud, A. Dutta, Int. J. Heat Mass Transf. 85, 206 (2015)

    Article  Google Scholar 

  30. S.S. Sebti, M. Mastiani, H. Mirzaei, A. Dadvand, S. Kashani, S.A. Hosseini, J. Zhejiang Univ. Sci. A 14, 307 (2013)

    Article  Google Scholar 

  31. S. Wu, H. Wang, S. Xiao, D. Zhu, Procedia Eng. 31, 240 (2012)

    Article  Google Scholar 

  32. Z. Qian, H. Shen, X. Fang, L. Fan, N. Zhao, J. Xu, Energy Build. 158, 1184 (2018)

    Article  Google Scholar 

  33. W. Yuan, X. Yang, G. Zhang, X. Li, Appl. Therm. Eng. 144, 551 (2018)

    Article  Google Scholar 

  34. I. Zarma, M. Ahmed, S. Ookawara, Energy Convers. Manag. 179, 229 (2019)

    Article  Google Scholar 

  35. A. ValanArasu, A.P. Sasmito, A.S. Mujumdar, Front Heat Mass Transf. 2, 1 (2011)

    Google Scholar 

  36. J.M. Mahdi, E.C. Nsofor, Appl. Therm. Eng. 108, 596 (2016)

    Article  Google Scholar 

  37. B. Kok, Appl. Therm. Eng. 170, 114989 (2020)

    Article  Google Scholar 

  38. I. Sarani, S. Payan, S.A. Nada, A. Payan, Appl. Therm. Eng. 176, 115017 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge Mr. Yacine Lakaf, Mr. Abdelhadi Reffis and Dr. Ferhoune Issam, Head of the department of Process Engineering (University of Oum El-Bouaghi), for their assistance in realizing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atef Chibani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chibani, A., Merouani, S. Acceleration of Heat Transfer and Melting Rate of a Phase Change Material by Nanoparticles Addition at Low Concentrations. Int J Thermophys 42, 66 (2021). https://doi.org/10.1007/s10765-021-02822-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02822-z

Keywords

Navigation