Skip to main content
Log in

A Survey: Flight Mechanism and Mechanical Structure of the UAV

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In this study, unmanned aerial vehicles (UAVs) were classified based on the principle of generation of lifting force. In addition, the structural characteristics, flight mechanisms, and research examples of each UAV category were introduced. Lifting force is the force that enables an aircraft to hover by countering gravity. It is one of the four forces (i.e., gravity, lifting force, thrust force, and drag force) that act on an aircraft while it flies. In this study, UAVs were classified into the following four categories based on the method of generation of lifting force: (1) fixed wing-based UAVs, which fly based on the lifting force generated indirectly from the forward thrust by using the geometry of aerodynamically designed fixed-wing cross-sections; (2) rotating and flapping wing-based UAVs, which generate lifting force directly using rotating or reciprocating wings, to counter gravity; (3) hybrid wing-based UAVs, which fly using both fixed and rotating wings; and (4) gas envelope-based UAVs, which generate lifting force using the difference in density between the gas and external air, rather than wings. These four types were classified further based specifically on the structural characteristics, and described using particular cases. Considering that UAVs have various flight purposes such as material transport, reconnaissance, surveillance, and special operations, it is anticipated that UAVs with the optimal flight mechanism for each purpose can be selected based on the flight characteristics of UAVs introduced in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Hassanalian, M., Rice, D., & Abdelkefi, A. (2018). Evolution of space drones for planetary exploration: A review. Progress in Aerospace Sciences, 97, 61–105.

    Article  Google Scholar 

  2. Blount, W. (2018). Temperature controlled transport of vaccines by drone in developing countries. Retrieved March 4, 2021 from http://hdl.handle.net/1853/59653.

  3. Roth, B. M., & Buckler, J. L. (2016). Unmanned Tactical Autonomous Control and Collaboration (UTACC) unmanned aerial vehicle analysis of alternatives (Doctoral dissertation, Monterey, California: Naval Postgraduate School).

  4. Corcoran, M. (2014). Drone journalism: Newsgathering applications of Unmanned Aerial Vehicles (UAVs) in covering conflict, civil unrest and disaster. Resource document. Australian Broadcasting Corporation. Retrieved January 2014 from https://cryptome.wikileaks.org/2014/03/drone-journalism.pdf

  5. Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79–97.

    Article  Google Scholar 

  6. Dalamagkidis, K., Valavanis, K. P., & Piegl, L. A. (2012). Aviation history and unmanned flight. In On integrating unmanned aircraft systems into the national airspace system. Springer.

  7. Watts, A. C., Ambrosia, V. G., & Hinkley, E. A. (2012). Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sensing, 4(6), 1671–1692.

    Article  Google Scholar 

  8. Zufferey, J. C., Hauert, S., Stirling, T., Leven, S., Roberts, J., & Floreano, D. (2013). Aerial collective systems (No. BOOK_CHAP, pp. 609–660). Pan Stanford.

  9. Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91, 99–131.

    Article  Google Scholar 

  10. Brelje, B. J., & Martins, J. R. (2019). Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches. Progress in Aerospace Sciences, 104, 1–19.

    Article  Google Scholar 

  11. González-Jorge, H., Martínez-Sánchez, J., & Bueno, M. (2017). Unmanned aerial systems for civil applications: A review. Drones, 1(1), 2.

    Article  Google Scholar 

  12. Saeed, A. S., Younes, A. B., Cai, C., & Cai, G. (2018). A survey of hybrid unmanned aerial vehicles. Progress in Aerospace Sciences, 98, 91–105.

    Article  Google Scholar 

  13. Chu, B., Jung, K., Han, C. S., & Hong, D. (2010). A survey of climbing robots: Locomotion and adhesion. International journal of precision engineering and manufacturing, 11(4), 633–647.

    Article  Google Scholar 

  14. Moon, S. K., Tan, Y. E., Hwang, J., & Yoon, Y. J. (2014). Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(3), 223–228.

    Article  Google Scholar 

  15. Rango, A., Laliberte, A., Herrick, J. E., Winters, C., Havstad, K., Steele, C., & Browning, D. (2009). Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. Journal of Applied Remote Sensing, 3(1), 033542.

    Article  Google Scholar 

  16. Bronz, M., Moschetta, J. M., Brisset, P., & Gorraz, M. (2009). Towards a long endurance MAV. International Journal of Micro Air Vehicles, 1(4), 241–254.

    Article  Google Scholar 

  17. Dalamagkidis, K., Valavanis, K. P., & Piegl, L. A. (2008). On unmanned aircraft systems issues, challenges and operational restrictions preventing integration into the National Airspace System. Progress in Aerospace Sciences, 44(7–8), 503–519.

    Article  Google Scholar 

  18. Cheng, S. W. (2008, March). Rapid deployment UAV. In 2008 IEEE Aerospace Conference (pp. 1–8). IEEE.

  19. Martinez, O. A., & Cardona, M. (2018, August). State of the Art and Future Trends on Unmanned Aerial Vehicle. In 2018 International Conference on Research in Intelligent and Computing in Engineering (RICE) (pp. 1–6). IEEE.

  20. Floreano, D., & Wood, R. J. (2015). Science, technology and the future of small autonomous drones. Nature, 521(7553), 460–466.

    Article  Google Scholar 

  21. Heutger, M., & Kückelhaus, M. (2014). Unmanned aerial vehicles in logistics–a DHL perspective on implications and use cases for the logistics industry. DHL Customer Solutions & Innovation.

    Google Scholar 

  22. Yuan, P., & Huang, D. (2019). A high-reliable and high-precision algorithm of angle measurement for UAV airborne photoelectrical detection system. International Journal of Precision Engineering and Manufacturing, 20(11), 1885–1891.

    Article  Google Scholar 

  23. Finger, D. F., Braun, C., & Bil, C. (2017, October). A review of configuration design for distributed propulsion transitioning VTOL aircraft. In Asia-Pacific International Symposium on Aerospace Technology-APISAT, 3–5.

  24. Bramlette, R. B., & Barrett-Gonzalez, R. M. (2017). Design and flight testing of a convertible quadcopter for maximum flight speed. Aerospace Research Central. Retrieved March 4, 2021 from https://doi.org/10.2514/6.2017-0243.

  25. Xu, J. (2017). Design perspectives on delivery drones. RAND.

    Book  Google Scholar 

  26. Răducanu, G., & Cîrciu, I. (2017). Unmanned aerial vehicle future development trends. Review of the Air Force Academy, 3, 105–110.

    Article  Google Scholar 

  27. Saeed, A. S., Younes, A. B., Islam, S., Dias, J., Seneviratne, L., & Cai, G. (2015, June). A review on the platform design, dynamic modeling and control of hybrid UAVs. In 2015 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 806–815). IEEE.

  28. Fredericks, W. J., Moore, M. D., & Busan, R. C. (2013). Benefits of Hybrid-Electric Propulsion to Achieve 4x Cruise Efficiency for a VTOL UAV. In 2013 International Powered Lift Conference (p. 4324).

  29. Zufferey, J. C., Klaptocz, A., Beyeler, A., Nicoud, J. D., & Floreano, D. (2007). A 10-gram vision-based flying robot. Advanced Robotics, 21(14), 1671–1684.

    Article  Google Scholar 

  30. Klaptocz, A., Boutinard-Rouelle, G., Briod, A., Zufferey, J. C., & Floreano, D. (2010, May). An indoor flying platform with collision robustness and self-recovery. In 2010 IEEE International Conference on Robotics and Automation (pp. 3349–3354). IEEE.

  31. Sanders, F. C., Tischler, M., Berger, T., Berrios, M. G., & Gong, A. (2018). System Identification and Multi-Objective Longitudinal Control Law Design for a Small Fixed-Wing UAV. In 2018 AIAA Atmospheric Flight Mechanics Conference (p. 0296).

  32. Higashino, S. I., & Nakama, K. (2018, January). Vertical landing of a fixed-wing UAV using the flat spin. In 31st Congress of the International Council of the Aeronautical Sciences, ICAS 2018. International Council of the Aeronautical Sciences.

  33. Zhao, A., Zou, H., Jin, H., & Wen, D. (2019). Structural design and verification of an innovative whole adaptive variable camber wing. Aerospace Science and Technology, 89, 11–18.

    Article  Google Scholar 

  34. Chao, H., Cao, Y., & Chen, Y. (2007, August). Autopilots for small fixed-wing unmanned air vehicles: A survey. In 2007 International Conference on Mechatronics and Automation (pp. 3144–3149). IEEE..

  35. Kingston, D., Beard, R., McLain, T., Larsen, M., & Ren, W. (2003, September). Autonomous vehicle technologies for small Fixed wing UAVs. In 2nd AIAA" Unmanned Unlimited" Conf. and Workshop & Exhibit (p. 6559).

  36. Hauert, S., Leven, S., Varga, M., Ruini, F., Cangelosi, A., Zufferey, J. C., & Floreano, D. (2011, September). Reynolds flocking in reality with fixed-wing robots: communication range vs. maximum turning rate. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5015–5020). IEEE.

  37. Carithers, C., & Montalvo, C. (2018). Experimental control of two connected fixed wing aircraft. Aerospace, 5(4), 113.

    Article  Google Scholar 

  38. Ismail, N. I., Zulkifli, A. H., Abdullah, M. Z., Basri, M. H. M., Arif, M., & Hamid, A. (2012). Evolution Of Monoplane Fixed Wing Micro Air Vehicle’s Shape And Design Review. In 2nd. International Conference on Arts, Social Sciences & Technology (ICAST2012).

  39. Cory, R., & Tedrake, R. (2008, August). Experiments in fixed-wing UAV perching. In AIAA Guidance, Navigation and Control Conference and Exhibit (p. 7256).

  40. Griffiths, S., Saunders, J., Curtis, A., Barber, B., Mclain, T., & Beard, R. (2006). Maximizing miniature aerial vehicles. IEEE Robotics and Automation Magazine, 13(3), 34–43.

    Article  Google Scholar 

  41. Griffiths, S., Saunders, J., Curtis, A., Barber, B., McLain, T., & Beard, R. (2007). Obstacle and terrain avoidance for miniature aerial vehicles. In Advances in Unmanned Aerial Vehicles (pp. 213–244). Retrieved March 4, 2021 from https://doi.org/10.1007/978-1-4020-6114-1_7.

  42. Dufour, L., Owen, K., Mintchev, S., & Floreano, D. (2016, October). A drone with insect-inspired folding wings. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1576–1581). Ieee.

  43. Di Luca, M., Mintchev, S., Heitz, G., Noca, F., & Floreano, D. (2017). Bioinspired morphing wings for extended flight envelope and roll control of small drones. Interface Focus, 7(1), 20160092.

    Article  Google Scholar 

  44. Paranjape, A. A., Chung, S. J., & Kim, J. (2013). Novel dihedral-based control of flapping-wing aircraft with application to perching. IEEE Transactions on Robotics, 29(5), 1071–1084.

    Article  Google Scholar 

  45. Ifju, P., Jenkins, D., Ettinger, S., Lian, Y., Shyy, W., & Waszak, M. (2002, January). Flexible-wing-based micro air vehicles. In 40th AIAA aerospace sciences meeting and exhibit (p. 705).

  46. Lee, S., Tjahjowidodo, T., Lee, H., & Lai, B. (2017). Investigation of a robust tendon-sheath mechanism for flexible membrane wing application in mini-UAV. Mechanical Systems and Signal Processing, 85, 252–266.

    Article  Google Scholar 

  47. Bachmann, R. J., Boria, F. J., Vaidyanathan, R., Ifju, P. G., & Quinn, R. D. (2009). A biologically inspired micro-vehicle capable of aerial and terrestrial locomotion. Mechanism and Machine Theory, 44(3), 513–526.

    Article  MATH  Google Scholar 

  48. Bachmann, R. J., Boria, F. J., Ifju, P. G., Quinn, R. D., Kline, J. E., & Vaidyanathan, R. (2005, July). Utility of a sensor platform capable of aerial and terrestrial locomotion. In Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. (pp. 1581–1586). IEEE.

  49. Jun, S. Y., Shastri, A., Sanz-Izquierdo, B., Bird, D., & McClelland, A. (2018). Investigation of antennas integrated into disposable unmanned aerial vehicles. IEEE Transactions on Vehicular Technology, 68(1), 604–612.

    Article  Google Scholar 

  50. Siddall, R., Ortega Ancel, A., & Kovač, M. (2017). Wind and water tunnel testing of a morphing aquatic micro air vehicle. Interface Focus, 7(1), 20160085.

    Article  Google Scholar 

  51. Hassanalian, M., Khaki, H., & Khosravi, M. (2015). A new method for design of fixed wing micro air vehicle. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering229(5), 837-850

  52. Kovač, M., Fauria, O., Zufferey, J. C., & Floreano, D. (2011, December). The EPFL jumpglider: A hybrid jumping and gliding robot with rigid or folding wings. In 2011 IEEE International Conference on Robotics and Biomimetics (pp. 1503–1508). IEEE.

  53. Biswas, P., Saksena, S. K., Anand, G., & Omkar, S. N. (2018). State-Space Identification of Unmanned Helicopter Dynamics using Invasive Weed Optimization Algorithm on Flight Data. arXiv preprint arXiv:@1809.05021.

  54. Balaram, B., Canham, T., Duncan, C., Golombek, M., Grip, H. F., Johnson, W., Maki, J., Quon A., Stem R., & Zhu, D. (2018). Mars helicopter technology demonstrator. In 2018 AIAA Atmospheric Flight Mechanics Conference (p. 0023).

  55. Suzuki, S., Ishii, T., Aida, Y., Fujisawa, Y., Iizuka, K., & Kawamura, T. (2014). Collision-free guidance control of small unmanned helicopter using nonlinear model predictive control. SICE Journal of Control, Measurement, and System Integration, 7(6), 347–355.

    Article  Google Scholar 

  56. Kuntz, N. R., & Oh, P. Y. (2008, January). Towards autonomous cargo deployment and retrieval by an unmanned aerial vehicle using visual servoing. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. 841–849).

  57. Yang, A. (2016). Bicopter/Twincopter/Dualcopter. 3D Printing. Thingiverse. Retrieved January 24, 2021 from https://www.thingiverse.com/thing:1797031

  58. Zou, J. T., Su, K. L., & Tso, H. (2012). The modeling and implementation of tri-rotor flying robot. Artificial Life and Robotics, 17(1), 86–91.

    Article  Google Scholar 

  59. Yoo, C. I., & Oh, T. S. (2016). Beach volume change using UAV photogrammetry Songjung Beach, Korea. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 1201.

    Article  Google Scholar 

  60. Kamel, M., Verling, S., Elkhatib, O., Sprecher, C., Wulkop, P., Taylor, Z., Siegwart R., & Gilitschenski, I. (2018). Voliro: An omnidirectional hexacopter with tiltable rotors. arXiv preprint arXiv:@1801.04581.

  61. Lee, C., Kang, H., & Chu, B. (2019). Airdrop operation and autonomous flight-back experiment of dual unmanned aircraft. Journal of Institute of Control, Robotics and Systems, 25(6), 452–462.

    Article  Google Scholar 

  62. Hofmann, J., Oczipka, M., Rutz, T., & Dämpfling, H. (2016). How could unmanned aerial systems (UAS) be used for ecohydrological and ecosystem research? Experiences of first operations with UAS in river flood plains of northern mongolia. Erforschung biologischer Ressourcen der Mongolei/Exploration into the Biological Resources of Mongolia, ISSN, 0440–1298, 174.

    Google Scholar 

  63. Lee, C., & Chu, B. (2018). Autonomous flight experiment of a foldable quadcopter with airdrop launching function. Journal of the Korean Society of Manufacturing Process Engineers, 17(2), 109–117.

    Article  Google Scholar 

  64. Mintchev, S., & Floreano, D. (2016, October). A pocket sized foldable quadcopter for situational awareness and reconnaissance. In 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). (pp. 396–401). Ieee.

  65. Mintchev, S., & Floreano, D. (2018). A multi-modal hovering and terrestrial robot with adaptive morphology. In Proceedings of the 2nd International Symposium on Aerial Robotics (No. CONF).

  66. Riviere, V., Manecy, A., & Viollet, S. (2018). Agile robotic fliers: A morphing-based approach. Soft robotics, 5(5), 541–553.

    Article  Google Scholar 

  67. Falanga, D., Kleber, K., Mintchev, S., Floreano, D., & Scaramuzza, D. (2018). The foldable drone: A morphing quadrotor that can squeeze and fly. IEEE Robotics and Automation Letters, 4(2), 209–216.

    Article  Google Scholar 

  68. Kornatowski, P. M., Mintchev, S., & Floreano, D. (2017, September). An origami-inspired cargo drone. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (pp. 6855–6862). IEEE.

  69. Zhao, M., Kawasaki, K., Chen, X., Noda, S., Okada, K., & Inaba, M. (2017, May). Whole-body aerial manipulation by transformable multirotor with two-dimensional multilinks. In 2017 IEEE International Conference on Robotics and Automation (ICRA). (pp. 5175–5182). IEEE.

  70. Mintchev, S., de Rivaz, S., & Floreano, D. (2017). Insect-inspired mechanical resilience for multicopters. IEEE Robotics and Automation Letters, 2(3), 1248–1255.

    Article  Google Scholar 

  71. Zhao, M., Anzai, T., Shi, F., Chen, X., Okada, K., & Inaba, M. (2018). Design, modeling, and control of an aerial robot dragon: A dual-rotor-embedded multilink robot with the ability of multi-degree-of-freedom aerial transformation. IEEE Robotics and Automation Letters, 3(2), 1176–1183.

    Article  Google Scholar 

  72. Henderson, L., Glaser, T., & Kuester, F. (2017, March). Towards bio-inspired structural design of a 3D printable, ballistically deployable, multi-rotor UAV. In 2017 IEEE Aerospace Conference (pp. 1–7). IEEE.

  73. Henderson, L., & Kuester, F. (2018, March). Adaptive design and optimization of a shape-changing drone. In 2018 IEEE Aerospace Conference (pp. 1–12). IEEE.

  74. Zhang, J. Q., Shi, Y. R., Wu, Y., & Wen, B. C. (2018). Nonlinear hybrid controller design for perturbed quadrotor robot by uncertainties. International Journal of Precision Engineering and Manufacturing, 19(11), 1637–1650.

    Article  Google Scholar 

  75. Wood, R. J. (2007, October). Liftoff of a 60mg flapping-wing MAV. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. (pp. 1889–1894). IEEE.

  76. Wood, R. J. (2007, October). Design, fabrication, and analysis of a 3DOF, 3cm flapping-wing MAV. In 2007 IEEE/RSJ international conference on intelligent robots and systems (pp. 1576–1581). IEEE.

  77. Duhamel, P. E. J., Perez-Arancibia, C. O., Barrows, G. L., & Wood, R. J. (2012). Biologically inspired optical-flow sensing for altitude control of flapping-wing microrobots. IEEE/ASME Transactions on Mechatronics, 18(2), 556–568.

    Article  Google Scholar 

  78. Nguyen, Q. V., Park, H. C., Goo, N. S., & Byun, D. (2010). Characteristics of a beetle’s free flight and a flapping-wing system that mimics beetle flight. Journal of Bionic Engineering, 7(1), 77–86.

    Article  Google Scholar 

  79. Coleman, D., Benedict, M., Hrishikeshavan, V., & Chopra, I. (2015, May). Design, development and flight-testing of a robotic hummingbird. In AHS 71st annual forum (pp. 5–7).

  80. Fuller, S. B., Karpelson, M., Censi, A., Ma, K. Y., & Wood, R. J. (2014). Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli. Journal of The Royal Society Interface, 11(97), 20140281.

    Article  Google Scholar 

  81. Roshanbin, A., & Preumont, A. (2019). Yaw control torque generation for a hovering robotic hummingbird. International Journal of Advanced Robotic Systems, 16(1), 1729881418823968.

    Article  Google Scholar 

  82. Nan, Y., Karásek, M., Lalami, M. E., & Preumont, A. (2017). Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle. Bioinspiration and biomimetics, 12(2), 026010.

    Article  Google Scholar 

  83. Olejnik, D., Sujit, A., Karasek, M., Remes, B., & de Croon, G. (2018). Wing sweeping mechanism for active control and stabilisation of a ornithopter MAV. In 10th International Micro-Air Vehicles Conference.

  84. Chung, S., & colleagues at the University of Illinois at Urbana-Champaign, Bat Bot, Research result, Caltech Magazine. https://magazine.caltech.edu/post/bots-on-move. Fall 2017.

  85. Mintchev, S., & Floreano, D. (2016). Adaptive morphology: A design principle for multimodal and multifunctional robots. IEEE Robotics & Automation Magazine, 23(3), 42–54.

    Article  Google Scholar 

  86. Jones, K. D., Bradshaw, C. J., Papadopoulos, J., & Platzer, M. F. (2005). Bio-inspired design of flapping-wing micro air vehicles. The Aeronautical Journal, 109(1098), 385–393.

    Article  Google Scholar 

  87. Sun, J., Liu, C., & Bhushan, B. (2019). A review of beetle hindwings: Structure, mechanical properties, mechanism and bioinspiration. Journal of the Mechanical Behavior of Biomedical Materials, 94, 63–73.

    Article  Google Scholar 

  88. Platt. (1933). Cyclorotor. Resource document. Wikipedia. Retrieved January 24, 2021 from https://en.wikipedia.org/wiki/Cyclorotor

  89. Doyle, J. M. (2017). Paddlewheel propulsion is now vertical and multi-modal: cyclocopter technology could make mini VTOL drone flight more stable and agile, as well as traverse ground or water. Verti-flite. 54–57. Retrieved March 4, 2021 from https://vtol.org/news/july/augustvertiflite-now-online.

  90. Shrestha, E., Benedict, M., Hrishikeshavan, V., & Chopra, I. (2012). Development of a 100-gram micro-cyclocopter capable of autonomous hover. Retrieved March 4, 2021 from https://dspace-erf.nlr.nl/xmlui/bitstream/handle/20.500.11881/655/ERF2012_018.pdf?isAllowed=y&sequence=1.

  91. Moble, B. (2010). Fundamental understanding of the cycloidal-rotor concept for micro air vehicle applications (Doctoral dissertation).

  92. Lee, C. H., Min, S. Y., Lee, J. W., & Kim, S. J. (2014). Design and experiment of two-rotored UAV cyclocopter. In 29th Congress of the International Council of the Aeronautical Sciences (ICAS), 7–12.

  93. Embention. (2017). HADA-Helicopter Adaptive Aircraft. Project document. Embention Project. Retrieved January 24, 2021 from https://www.embention.com/en/projects/hada-helicopter-adaptive-aircraft/

  94. UAS VISION (2012). Retrieved January 24, 2021 from https://www.uasvision.com/2012/09/03/rheinmetall-airborne-systems-tactical-hybrid-uas

  95. Gu, H., Lyu, X., Li, Z., Shen, S., & Zhang, F. (2017, June). Development and experimental verification of a hybrid vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV). In 2017 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 160–169). IEEE.

  96. kalpa Gunarathna, J., & Munasinghe, R. (2018, May). Development of a Quad-rotor Fixed-wing Hybrid Unmanned Aerial Vehicle. In 2018 Moratuwa Engineering Research Conference (MERCon). (pp. 72–77). IEEE.

  97. TechTilt. (2019). Retrieved January 24, 2021 from https://wing.com/

  98. Matsumoto, T., Konno, A., Suzuki, R., Oosedo, A., Go, K., & Uchiyama, M. (2010, October). Agile turnaround using post-stall maneuvers for tail-sitter VTOL UAVs. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1612–1617.

  99. Wang, K., Ke, Y., & Chen, B. M. (2017). Autonomous reconfigurable hybrid tail-sitter UAV U-Lion. Science China Information Sciences, 60(3), 1–16.

    Article  Google Scholar 

  100. Ang, K. Z., Cui, J. Q., Pang, T., Li, K., Wang, K., Ke, Y., & Chen, B. M. (2015). Design and implementation of a thrust-vectored unmanned tail-sitter with reconfigurable wings. Unmanned Systems, 3(02), 143–162.

    Article  Google Scholar 

  101. Green, W. E., & Oh, P. Y. (2006, May). Autonomous hovering of a fixed-wing micro air vehicle. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. (pp. 2164–2169). IEEE.

  102. Zhang, D., Chen, Z., & Lv, J. (2012). Lift system design of tail-sitter unmanned aerial vehicle. Intelligent Control and Automation, 3(04), 285.

    Article  Google Scholar 

  103. Beach, J. M., Argyle, M. E., McLain, T. W., Beard, R. W., & Morris, S. (2014, May). Tailsitter attitude control using resolved tilt-twist. In 2014 International Conference on Unmanned Aircraft Systems (ICUAS), 768–779.

  104. Kubo, D., Muraoka, K., Okada, N., Naruoka, M., Tsuchiya, T., & Suzuki, S. (2009). Flight testing of a wing-in-propeller-slipstream mini unmanned aerial vehicle. In AIAA Infotech@ Aerospace Conference and AIAA Unmanned... Unlimited Conference (p. 2070).

  105. Wang, K., Ke, Y., Lai, S., Gong, K., Tan, Y., & Chen, B. M. (2017, July). Model-based optimal auto-transition and control synthesis for tail-sitter UAV KH-Lion. In 2017 13th IEEE International Conference on Control & Automation (ICCA) (pp. 541–547). IEEE.

  106. Wang, K., Phang, S. K., Ke, Y., Chen, X., Gong, K., & Chen, B. M. (2017, July). Vision-aided tracking of a moving ground vehicle with a hybrid uav. In 2017 13th IEEE International Conference on Control & Automation (ICCA) (pp. 28–33). IEEE.

  107. Stone, R. H., & Clarke, G. (2001). The T-wing: a VTOL UAV for defense and civilian applications. University of Sydney.

    Google Scholar 

  108. Ke, Y., & Chen, B. M. (2017, July). Full envelope dynamics modeling and simulation for tail-sitter hybrid UAVs. In 2017 36th Chinese Control Conference (CCC) (pp. 2242–2247). IEEE.

  109. Ke, Y., Wang, K., & Chen, B. M. (2016). A preliminary modeling and control framework for a hybrid UAV J-Lion. In Proceedings of the International Micro Air Vehicle Conference and Competition.

  110. Demitrit, Y., Verling, S., Stastny, T., Melzer, A., & Siegwart, R. (2017, May). Model-based wind estimation for a hovering VTOL tailsitter UAV. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3945–3952). IEEE.

  111. Bapst, R., Ritz, R., Meier, L., & Pollefeys, M. (2015, September). Design and implementation of an unmanned tail-sitter. In 2015 IEEE/RSJ International conference on intelligent robots and systems (IROS) (pp. 1885–1890). IEEE.

  112. Zhang, D., Chen, Z., & Xi, L. (2016, September). Adaptive dual fuzzy PID control method for longitudinal attitude control of tail-sitter UAV. In 2016 22nd International Conference on Automation and Computing (ICAC) (pp. 378–382). IEEE.

  113. Wong, K. C., Guerrero, J. A., Lara, D., & Lozano, R. (2007, October). Attitude stabilization in hover flight of a mini tail-sitter UAV with variable pitch propeller. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2642–2647). IEEE.

  114. Vorsin, D., & Arogeti, S. (2017, July). Flight transition control of a multipurpose uav. In 2017 13th IEEE International Conference on Control and Automation (ICCA) (pp. 507–512). IEEE.

  115. xCraft. (2015). XPlusOne. Article. 2paragraphs. Retrieved January 24, 2021 from https://2paragraphs.com/2015/10/xcraft-drones-on-shark-tank-fly-like-airplanes/

  116. Zhou, J., Lyu, X., Li, Z., Shen, S., & Zhang, F. (2017, September). A unified control method for quadrotor tail-sitter uavs in all flight modes: Hover, transition, and level flight. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (pp. 4835–4841). IEEE.

  117. Lyu, X., Gu, H., Wang, Y., Li, Z., Shen, S., & Zhang, F. (2017, May). Design and implementation of a quadrotor tail-sitter vtol uav. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 3924–3930). IEEE.

  118. Wang, Y., Lyu, X., Gu, H., Shen, S., Li, Z., & Zhang, F. (2017, June). Design, implementation and verification of a quadrotor tail-sitter VTOL UAV. In 2017 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 462–471). IEEE.

  119. Xu, W., Gu, H., Qing, Y., Lin, J., & Zhang, F. (2019, June). Full Attitude Control of an Efficient Quadrotor Tail-sitter VTOL UAV with Flexible Modes. In 2019 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 542–550). IEEE.

  120. Park, J. S., Jung, S. N., Lee, M. K., & Kim, J. M. (2010). Design optimization framework for tiltrotor composite wings considering whirl flutter stability. Composites Part B: Engineering, 41(4), 257–267.

    Article  Google Scholar 

  121. Lee, J., Yoo, C., Park, Y. S., Park, B., Lee, S. J., Gweon, D. G., & Chang, P. H. (2012). An experimental study on time delay control of actuation system of tilt rotor unmanned aerial vehicle. Mechatronics, 22(2), 184–194.

    Article  Google Scholar 

  122. Ventura Diaz, P., Yoon, S., & Theodore, C. R. (2018). High-fidelity computational aerodynamics of the elytron 4S UAV. Retrieved March 4, 2021 from https://vtol.org/store/product/highfidelity-computationalaerodynamics-of-the-elytron-4s-uav-12559.cfm.

  123. Liu, Z., He, Y., Yang, L., & Han, J. (2017). Control techniques of tilt rotor unmanned aerial vehicle systems: A review. Chinese Journal of Aeronautics, 30(1), 135–148.

    Article  Google Scholar 

  124. Ta, D. A., Fantoni, I., & Lozano, R. (2012, June). Modeling and control of a tilt tri-rotor airplane. In 2012 American control conference (ACC), (pp. 131–136). IEEE.

  125. Ozdemir, U., Aktas, Y. O., Vuruskan, A., Dereli, Y., Tarhan, A. F., Demirbag, K., & Inalhan, G. (2014). Design of a commercial hybrid VTOL UAV system. Journal of Intelligent and Robotic Systems, 74(1–2), 371–393.

    Article  Google Scholar 

  126. Thamm, H. P., Brieger, N., Neitzke, K. P., Meyer, M., Jansen, R., & Mönninghof, M. (2015). SONGBIRD-an innovative UAS combining the advantages of fixed wing and multi rotor UAS. Retrieved March 4, 2021 from https://doi.org/10.5194/isprsarchives-XL-1-W4-345-2015.

  127. Flores, G., Lugo, I., & Lozano, R. (2014, December). 6-dof hovering controller design of the quad tiltrotor aircraft: Simulations and experiments. In 53rd IEEE Conference on Decision and Control. (pp. 6123–6128). IEEE.

  128. Lin, Q., Cai, Z., Yang, J., Sang, Y., & Wang, Y. (2014, July). Trajectory tracking control for hovering and acceleration maneuver of quad tilt rotor uav. In Proceedings of the 33rd Chinese Control Conference. (pp. -2057). IEEE.

  129. Low, J. E., Pheh, Y. H., & Foong, S. (2016, July). Analysis of wing twist effects on hover flight dynamics of a single rotor aerial craft. In 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). (pp. 323–328). IEEE.

  130. Shaiful, D. S. B., Win, L. T. S., Low, J. E., Win, S. K. H., Soh, G. S., & Foong, S. (2018, July). Optimized Transition Path of a Transformable HOvering Rotorcraft (THOR). In 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). (pp. 460–465). IEEE.

  131. Low, J. E., Win, L. T. S., Le Lee, J., Soh, G. S., & Foong, S. (2018, July). Towards a stable three-mode transformable hovering rotorcraft (THOR). In 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 492–497). IEEE.

  132. Low, J. E., Win, L. T. S., Shaiful, D. S. B., Tan, C. H., Soh, G. S., & Foong, S. (2017, May). Design and dynamic analysis of a transformable hovering rotorcraft (THOR). In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6389–6396). IEEE.

  133. Ostermann, T., Holsten, J., Dobrev, Y., & Moormann, D. (2012). Control concept of a tiltwing uav during low speed manoeuvring. In Proceeding of the 28th International Congress of the Aeronautical Sciences: ICAS Brisbane, Australia (Vol. 1190).

  134. Dickeson, J. J., Mix, D. R., Koenig, J. S., Linda, K. M., Cifdaloz, O., Wells, V. L., & Rodriguez, A. A. (2005, December). H∞ hover-to-cruise conversion for a tilt-wing rotorcraft. In Proceedings of the 44th IEEE Conference on Decision and Control. (pp. 6486–6491). IEEE.

  135. Dickeson, J. J., Miles, D., Cifdaloz, O., Wells, V. L., & Rodriguez, A. A. (2007, July). Robust lpv h gain-scheduled hover-to-cruise conversion for a tilt-wing rotorcraft in the presence of cg variations. In 2007 American Control Conference (pp. 5266–5271). IEEE.

  136. Freewing. (1994). Tilt-Body. Research result. Freewing. Retrieved January 24, 2021 http://www.freewing.com/TiltingBody/

  137. Jeong, J., Yoon, S., Kim, S. K., & Suk, J. (2015). Dynamic modeling and analysis of a single tilt-wing unmanned aerial vehicle. In AIAA Modeling and Simulation Technologies Conference (p. 1804).

  138. Muraoka, K., Okada, N., Kubo, D., & Sato, M. (2012, September). Transition flight of quad tilt wing VTOL UAV. In 28th Congress of the International Council of the Aeronautical Sciences (pp. 2012–11).

  139. Muraoka, K., Okada, N., & Kubo, D. (2009). Quad tilt wing vtol uav: Aerodynamic characteristics and prototype flight test. In AIAA Infotech@ Aerospace Conference and AIAA Unmanned… Unlimited Conference (p. 1834).

  140. Çetinsoy, E., Dikyar, S., Hançer, C., Oner, K. T., Sirimoglu, E., Unel, M., & Aksit, M. F. (2012). Design and construction of a novel quad tilt-wing UAV. Mechatronics, 22(6), 723–745.

    Article  Google Scholar 

  141. Rothhaar, P. M., Murphy, P. C., Bacon, B. J., Gregory, I. M., Grauer, J. A., Busan, R. C., & Croom, M. A. (2014). NASA langley distributed propulsion VTOL tiltwing aircraft testing, modeling, simulation, control, and flight test development. In 14th AIAA aviation technology, integration, and operations conference (p. 2999).

  142. Fredericks, W. J., McSwain, R. G., Beaton, B. F., Klassman, D. W., & Theodore, C. R. (2017). Greased Lightning (GL-10) Flight Testing Campaign. Retrieved March 4, 2021 from https://ntrs.nasa.gov/citations/20170007194.

  143. Mcswain, R. G., Glaab, L. J., Theodore, C. R., Rhew, R. D., & North, D. D. (2017). Greased lightning (GL-10) performance flight research: Flight data report.

  144. González, P., Burgard, W., Sanz Domínguez, R., & López Fernández, J. (2009). Developing a low-cost autonomous indoor blimp. Journal of Physical Agents, 3(1), 43–52.

    Google Scholar 

  145. Oh, S., Kang, S., Lee, K., Ahn, S., & Kim, E. (2006, October). Flying display: Autonomous blimp with real-time visual tracking and image projection. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. (pp. 131–136). IEEE.

  146. Skuza, J. R., Park, Y., Kim, H. J., Seaman, S. T., King, G. C., Choi, S. H., Song, K. D., Yoon, H., & Lee, K. (2014). Feasibility study of cargo airship transportation systems powered by new green energy technologies. Retrieved March 4, 2021 from https://ntrs.nasa.gov/citations/20140006040.

  147. Paiva, E., Benjovengo, F., Bueno, S., & Ferreira, P. (2009, May). Sliding mode control approaches for an autonomous unmanned airship. In 18th AIAA lighter-than-air systems technology conference (p. 2869).

  148. Reeves, N., Poncet, E., Nembrini, J., & Martinoli, A. (2005). [VOILES| SAILS], Self-assembling intelligent lighter-than-air structures. In Proc. of the Eight International Conference on Generative Art (No. CONF, pp. 297–311).

  149. Moon, D. H., Shin, S. H., Na, J. B., & Han, S. Y. (2020). Fluid-structure interaction based on meshless local Petrov-Galerkin method for worm soft robot analysis. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(3), 727–742.

    Article  Google Scholar 

  150. Jeon, Y., Oh, J., Kim, J., & Seo, T. Finger clamping unit: A clamping device with a large clamping range. International Journal of Precision Engineering and Manufacturing, 22(2), 313–327.

  151. Lee, H. J., & Kim, J. Y. (2021). Balance control strategy of biped walking robot SUBO-1 based on force-position hybrid control. International Journal of Precision Engineering and Manufacturing, 22(1), 161–175.

    Article  Google Scholar 

  152. Kim, C. K., Kong, D., Kim, D. S., & Kwon, D. S. (2020). Novel multi-degrees-of-freedom friction-based locking mechanism applicable to positioning arm for minimally invasive surgery. International Journal of Precision Engineering and Manufacturing, 22(1), 83–93.

  153. Lee, H., Liau, Y. Y., Kim, S., & Ryu, K. (2020). Model-based human robot collaboration system for small batch assembly with a virtual fence. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(3), 609–623.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07043979).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baeksuk Chu.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C., Kim, S. & Chu, B. A Survey: Flight Mechanism and Mechanical Structure of the UAV. Int. J. Precis. Eng. Manuf. 22, 719–743 (2021). https://doi.org/10.1007/s12541-021-00489-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00489-y

Keywords

Navigation