Skip to main content
Log in

Nonlinear coupling of upper-hybrid waves with lower-hybrid waves in a degenerate dense plasma

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The nonlinear coupling of high-frequency upper-hybrid (UH) pump waves with low-frequency lower-hybrid (LH) waves is studied in a degenerate magnetoplasma, comprising of quantum electrons and classical ions. For this purpose, the framework of quantum hydrodynamic model is utilized to examine the Fermi pressure effects on the nonlinear dispersion relations of UH and LH waves with quantum settings. Furthermore, by applying the Fourier analysis and collecting the same phasor terms, the nonlinear dispersion relations can be coupled to investigate the growth rates of three-wave decay and modulational instabilities under certain approximations. It is noticed that inclusion of electron Fermi pressure significantly alters the parametric three-wave decay and modulational instabilities besides the corrections due to quantum exchange-correlations and Bohm potential in degenerate magnetoplasmas. The present findings might be useful to understand the nonlinear wave interactions in superdense astrophysical environments, e.g., white dwarfs, magnetars, neutron stars, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G Manfredi Fields Inst. Commun. 46 263 (2005)

    Google Scholar 

  2. H G Craighead Science 290 1532 (2000)

    Article  ADS  Google Scholar 

  3. P A Markowich, C A Ringhofer and C Schmeiser Semiconductor Equations (New York: Springer-Verlag) Vol 1, Chapter 2, Section 4, p 25 (1990)

  4. M Jamil, A Rasheed, Ch Rozina, W M Moslem and M Salimullah Phys. Plasmas 21 020704 (2014).

  5. P A Norreys, F N Beg, Y Sentoku, L O Silva, R A Smith and R M G M Trines Phys. Plasmas  16 041002 (2009)

    Article  ADS  Google Scholar 

  6. D Bohm and D Pines Phys. Rev.92 609 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  7. D Kremp, M Schlanges and W D Kraeft Quantum Statistics of Non-ideal Plasmas (Heidelberg: Springer) Vol 1, Chapter 2, Section 4, p 25 (2005)

  8. M Bonitz Quantum Kinetic Theory (Berlin: Springer) (2016)

    Book  Google Scholar 

  9. M Marklund and G Brodin Phys. Rev. Lett. 98 025001 (2007)

    Article  ADS  Google Scholar 

  10. F Brosens and J Devreese Phys. Rev. B 29 543 (1984)

    Article  ADS  Google Scholar 

  11. S H Mao and J K Xue Phys. Scr. 84 055501 (2011)

    Article  ADS  Google Scholar 

  12. H Cai Xia and X Ju Kui Chin. Phys. B 22 025202 (2013)

    Article  ADS  Google Scholar 

  13. N Crouseilleset, P A Hervieux and G Manfredi Phys. Rev. B 78 155412 (2008)

    Article  ADS  Google Scholar 

  14. P K Shukla, S Ali, L Stenflo and M Marklund Phys. Plasmas 13 112111 (2006)

    Article  ADS  Google Scholar 

  15. J H Lee et al. Phys. Rev. Lett. 80 2330 (1998)

  16. T Oosako et al. Nucl. Fusion 49 065020 (2009)

  17. F Pruneti and M Velli, in Proceedings of the Fifth SOHO Workshop: The Corona and Solar Wind near Minimum Activity (European Space Agency: Noordwijk) Vol 404, Chapter 2, Section 4, p 25 (1997)

  18. H Eubank Phys. Fluids 14 2551 (1972)

  19. P H Chang, M Porkola and B Grek Phys. Rev. Lett. 28 206 (1972)

  20. Z Aihui and G Zhe Nucl. Fusion 53 083015 (2013)

    Article  Google Scholar 

  21. T Idehara, M Takeda and Y Ishida Phys. Fluids 17 266 (1974)

    Article  ADS  Google Scholar 

  22. V Jain J. Soc. Gene. Sys. Res. 26 51 (1981)

    Google Scholar 

  23. B Grek and M Porkolab Phys. Rev. Lett. 30 836 (1973)

    Article  ADS  Google Scholar 

  24. K F Lee Phys. Fluids 17 1220 (1974)

  25. K F Lee IEEE Trans. Plasma Sci. 2 187 (1974)

  26. A T Lin and C C Lin Phys. Rev. Lett. 47 98 (1981)

  27. A T Lin, C C Lin and J M Dawson Phys. Fluids 25 646 (1984)

  28. G Murtaza and P K Shukla J. Plasma Phys. 31 423 (1984)

    Article  ADS  Google Scholar 

  29. M Salimullah and Y G Liu Salimullah Phys. Rev. A Gen. Phys.  31 4005 (1985)

    Article  ADS  Google Scholar 

  30. M Y Yu and P K Shukla Plasmas Phys19 889 (1977)

    Article  ADS  Google Scholar 

  31. M Shahid, Z.Iqbal, M Jamil and G Murtaza Phys. Plasmas  24 102113 (2017)

    Article  ADS  Google Scholar 

  32. A N Kaufman and L Stenflo Phys. Scr. 11 269 (1975)

    Article  ADS  Google Scholar 

  33. R T Faria and P K Shukla Phys. Scr. T82 7 (1999)

  34. Ch Rozina, S Ali, N Maryam and N Amina Phys. Plasmas  24 102312 (2017)

    Article  ADS  Google Scholar 

  35. Ch Rozina, S Ali, H A Shah and M Jamil Phys. Plasmas 25 092903 (2018)

  36. L Stenflo Phys. Scr.  T50 15 (1994)

    Article  ADS  Google Scholar 

  37. A A Galeev and R Z Sagdeev Nonlinear Plasma Theory (New York: Plenum) Vol 1, Chapter 2, Section 4, p 25 (1979)

  38. T B Benjamin and J E Feir J. Fluid Mech.  27 417 (1967)

    Article  ADS  Google Scholar 

  39. T B Benjamin Proc. R. Soc. Lond. A. Math. Phys. Sci. 299 59 (1967)

  40. D Van Houtte, G Martin, A Becoulet, J Bucalossi, G Giruzzi and G T Hoang Nucl. Fusion 44 L11 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Rozina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruby, R., Ali, S. & Rozina, C. Nonlinear coupling of upper-hybrid waves with lower-hybrid waves in a degenerate dense plasma. Indian J Phys 95, 2507–2512 (2021). https://doi.org/10.1007/s12648-020-01907-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01907-z

Keywords

Navigation