Skip to main content

Advertisement

Log in

Natural Intertidal Oyster Reef Growth Across Two Landscape Settings and Tidal Ranges

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Intertidal oyster reefs are typically restored to offset the loss of reef-associated ecosystem services (e.g., improved water quality, shoreline stabilization, and fish habitat), but the scale of enhanced services is predicated on the health and growth of the restored reef. Previous work on young (<15 years) restored reefs showed the highest growth rates along the sides of reefs where they are aerially exposed 20–40% of the time, but much is still unknown about how those positions in the tidal frame change with landscape setting, tidal range, and reef maturity. This study compared the area of maximum growth among 12 natural intertidal reefs in coastal North Carolina that range between 1395 and 62 years old. The reefs include fringing and patch landscape settings in each of two estuaries with tidal ranges of 0.94 m and 1.51 m. Peak growth rates were similar among landscape and tidal settings and were faster than the rate of sea-level rise (SLR) indicating intertidal reef resilience to accelerating SLR. Flow baffling associated with fringing reefs and higher summer air temperatures in the southern estuary likely contributed to a lower position of the optimal growth zone, where growth rates are highest, in the tidal frame. Intertidal reef growth manifests differently across the range of aerial exposures at varying stages of maturity. Once reefs reached ~50 years old, the elevation of the reef crests equilibrated to ~60–70% aerial exposure and peak growth rates stabilized between 2 and 4 cm year−1 at ~50% aerial exposure. These results are a useful guide for identifying areas and cultch configurations that optimize reef growth rates, enhancing the probability for self-sustaining restored reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bahr, L.M., Lanier, W. P. 1981. The ecology of intertidal oyster reefs of the south Atlantic coast: A community profile, ed. U.S.F.a.W. Service, 105. Washington, D.C.: Office of Biological Services.

  • Beck, M.W., R.D. Brumbaugh, L. Airoldi, A. Carranza, L.D. Coen, C. Crawford, O. Defeo, Graham J. Edgar, B. Hancock, M.C. Kay, H.S. Lenihan, M.W. Luckenbach, C.L. Toropova, G. Zhang, and X. Guo. 2011. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 61 (2): 107–116.

    Article  Google Scholar 

  • Bilkovic, D.M., M. Mitchell, P. Mason, and K. Duhring. 2016. The role of living shorelines as estuarine habitat conservation strategies. Coastal Management 44 (3): 161–174.

    Article  Google Scholar 

  • Bishop, M.J., and C.H. Peterson. 2006. Direct effects of physical stress can be counteracted by indirect benefits: Oyster growth on a tidal elevation gradient. Oecologia 147 (3): 426–433.

    Article  Google Scholar 

  • Byers, J.E., J.H. Grabowski, M.F. Piehler, A.R. Hughes, H.W. Weiskel, J.C. Malek, and D.L. Kimbro. 2015. Geographic variation in intertidal oyster reef properties and the influence of tidal prism. Limnology and Oceanography 60 (3): 1051–1063.

    Article  Google Scholar 

  • Chapman, R.W., A. Mancia, M. Beal, A. Veloso, C. Rathburn, A. Blair, A.F. Holland, G.W. Warr, G. Didinato, I.M. Sokolova, E.F. Wirth, E. Duffy, and D. Sanger. 2011. The transcriptomic responses of the eastern oyster, Crassostrea virginica, to environmental conditions. Molecular Ecology 20 (7): 1431–1449.

    Article  Google Scholar 

  • Christiansen, T., P.L. Wiberg, and T.G. Milligan. 2000. Flow and sediment transport on a tidal salt marsh surface. Estuarine, Coastal and Shelf Science 50 (3): 315–331.

    Article  Google Scholar 

  • Dame, R.F. 1972. The ecological energies of growth, respiration, and assimilation in the intertidal American oyster Crassostrea virginica. Marine Biology 17 (3): 243–250.

    Article  Google Scholar 

  • Davies, D.J., E.N. Powell, ., R.J. Stanton Jr.. 1989. Relative rates of shell dissolution and net sediment accumulation- a commentary: Can shell beds form by the gradual accumulation of biogenic debris on the sea floor? Lethaia 22: 207–212, 2.

    Article  Google Scholar 

  • Fey, J. 2016. New nonparametric rank tests for interactions in factorial designs with repeated measures. Journal of Modern Applied Statistical Methods 6 (1): 78–99.

    Google Scholar 

  • Fodrie, F.J., A.B. Rodriguez, C.J. Baillie, M.C. Brodeur, S.E. Coleman, R.K. Gittman, D.A. Keller, M.D. Kenworthy, A.K. Poray, J.T. Ridge, E.J. Theuerkauf, and N.L. Lindquist. 2014. Classic paradigms in a novel environment: Inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration. Journal of Applied Ecology 51 (5): 1314–1325.

    Article  Google Scholar 

  • Fodrie, F.J., A.B. Rodriguez, R.K. Gittman, J.H. Grabowski, N.L. Lindquist, C.H. Peterson, M.F. Piehler, and J.T. Ridge. 2017. Oyster reefs as carbon sources and sinks. Proceedings of the Royal Society B: Biological Sciences: 284.

  • Friedrichs, C.T., and J.E. Perry. 2001. Tidal salt marsh morphodynamics: A synthesis. Journal of Coastal Research 27 (Special Issue): 7–37.

    Google Scholar 

  • Grabowski, J.H., A.R. Hughes, D.L. Kimbro, and M.A. Dolan. 2005. How habitat setting influences restored oyster reef communities. Ecology 86 (7): 1926–1935.

    Article  Google Scholar 

  • Grabowski, J.H., R.D. Brumbaugh, R.F. Conrad, A.G. Keeler, J.J. Opaluch, C.H. Peterson, M.F. Piehler, S.P. Powers, and A.R. Smyth. 2012. Economic valuation of ecosystem services provided by oyster reefs. BioScience 62 (10): 900–909.

    Article  Google Scholar 

  • Grave, C. 1901. The oyster reefs of North Carolina: A geological and economic study. Johns Hopkins University Circulars. 151: 1–9.

    Google Scholar 

  • Harding, J.M., and R.L. Mann. 2001. Oyster reefs as fish habitat: Opportunistic use of restored reefs. Journal of Shellfish Research 20: 951–959.

    Google Scholar 

  • Housego, R.M., and J.H. Rosman. 2016. A model for understanding the effects of sediment dynamics on oyster reef development. Estuaries and Coasts 39 (2): 495–509.

    Article  Google Scholar 

  • Kay, M., Wobbrock, J. 2020. ARTool: Aligned Rank Transform for Nonparametric Factorial ANOVAs. https://doi.org/10.5281/zenodo.594511, R package version 0.10.8.

  • Lenihan, H.S., C.H. Peterson, and J.M. Allen. 1996. Does flow speed also have a direct effect on growth of active suspension-feeders: An experimental test on oysters. Limnology and Oceanography 41 (6): 1359–1366.

    Article  Google Scholar 

  • Lenihan, H.S., F. Micheli, S.W. Shelton, and C.H. Peterson. 1999. The influence of multiple environmental stressors on susceptibility to parasites: An experimental determination with oysters. Limnology and Oceanography 44 (3part2): 910–924.

    Article  CAS  Google Scholar 

  • Lenihan, H.S., C.H. Peterson, J.E. Byers, J.H. Grabowski, G.W. Thayer, and D.R. Colby. 2001. Cascading of habitat degradation: oyster reefs invaded by refugee fishes escaping stress. Ecological Applications 11 (3): 764–782.

    Article  Google Scholar 

  • Leonard, L.A., A.C. Hine, and M.E. Luther. 1995. Surficial sediment transport and deposition processes in a Juncus roemerianus marsh, west-central Florida. Journal of Coastal Research 11 (2): 322–336.

    Google Scholar 

  • Livingston, R.J., R.L. Howell IV, N. Xufeng, F.G. Lewis III, and G.C. Woodsum. 1999. Recovery of oyster reefs (Crassostrea virginica) in a Gulf estuary following disturbance by two hurricanes. Bulletin of Marine Science 64: 465–483.

    Google Scholar 

  • Manis, J.E., S.K. Garvis, S.M. Jachec, and L.J. 2015. Wave attenuation experiments over living shorelines over time: A wave tank study to assess recreational boating pressures. Journal of Coastal Conservation 19 (1): 1–11.

    Article  Google Scholar 

  • McGill, R., J. Tukey, and W. Larsen. 1978. Variations of box plots. The American Statistician 32 (1): 12–16. https://doi.org/10.2307/2683468.

    Article  Google Scholar 

  • Meyer, D.L., E.C. Townsend, and G.W. Thayer. 1997. Stabilization and erosion control value of oyster cultch for intertidal marsh. Restoration Ecology 5 (1): 93–99.

    Article  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83 (10): 2869–2877.

    Article  Google Scholar 

  • Morris, R.L., T.M. Konlechner, M. Ghisalberti, and S.E. Swearer. 2018. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defense. Global Change Biology 24 (5): 1827–1842.

    Article  Google Scholar 

  • Morris, R.L., D.M. Bilkovic, M.K. Boswell, D. Bushek, J. Cebrian, J. Goff, K.M. Kibler, M.K. La Peyre, G. McClenachan, J. Moody, P. Sacks, J.P. Shinn, E.L. Sparks, N.A. Temple, L.J. Walters, B.M. Webb, and S.E. Swearer. 2019. The application of oyster reefs in shoreline protection: Are we over-engineering for an ecosystem engineer? Journal of Applied Ecology 56 (7): 1703–1711.

    Article  Google Scholar 

  • Morris, R.L., A. Boxshall, and S.E. Swearer. 2020. Climate-resilient coasts require diverse defense solutions. Nature Climate Change.

  • Narayan, S., M.W. Beck, B.G. Reguero, I.J. Losada, B. van Wesenbeeck, N. Pontee, J.N. Sanchirico, J.C. Ingram, G.M. Lange, and K.A. Burks-Copes. 2016. The effectiveness, costs and coastal protection benefits of natural and nature-based defenses. PLoS One 11: e0154735.

    Article  CAS  Google Scholar 

  • Newell, R.C. 1979. Chapter 2: Tolerance of environmental stress. In Biology of Intertidal Animals, 121. New York: Elsevier.

    Google Scholar 

  • Newell, R.I.E. 1988. Ecological changes in Chesapeake Bay: Are they the result of overharvesting the American oyster, Crassostrea virginica? in understanding the estuary: advances in Chesapeake Bay research: 536–546. Baltimore: Chesapeake Research Consortium.

  • NOAA Climate Data Online. 2020. Stations GHCND:USC00317813, GHCND:USW00093765. (2013-01-01 to 2019-01-31 23:59) accessed 2020-06-07.

  • NOAA Tides & Currents. 2020. Station 8656483. (1983-2001) accessed 2020-11-03. https://tidesandcurrents.noaa.gov/reports.html?id=8656483

  • Piazza, B.P., P.D. Banks, and M.K. La Peyre. 2005. The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Louisiana. Restoration Ecology 13 (3): 499–506.

    Article  Google Scholar 

  • Pomeroy, L.R., C.F. D'Elia, and L.C. Schaffner. 2006. Limits to top-down control of phytoplankton by oysters in Chesapeake Bay. Marine Ecology Progress Series 325: 301–309.

    Article  CAS  Google Scholar 

  • Powers, S.P., C.H. Peterson, J.H. Grabowski, and H.S. Lenihan. 2009. Success of constructed oyster reefs in no-harvest sanctuaries: Implications for restoration. Marine Ecology Progress Series 389: 159–170.

    Article  Google Scholar 

  • Raj, P.J. Sanjeeva. 2008. Oysters in a new classification of keystone species. Resonance: 648–654.

  • Reguero, B.G., M.W. Beck, D.N. Bresch, J. Calil, and I. Meliane. 2018. Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States. PLoS One 13 (4): e0192132.

    Article  CAS  Google Scholar 

  • Reidenbach, M.A., P. Berg, A. Hume, J.C.R. Hansen, and E.R. Whitman. 2013. Hydrodynamics of intertidal oyster reefs: The influence of boundary layer flow processes on sediment and oxygen exchange. Limnology and Oceanography: Fluids and Environments 3: 225–239.

    Google Scholar 

  • Reimer, P.J., M.G.L. Baille, E. Bard, A. Bayliss, J.W. Beck, C.J.H. Bertrand, P.G. Blackwell, C.E. Buck, G.S. Burr, K.B. Cutler, P.E. Damon, R.L. Edwards, R.G. Fairbanks, M. Friedrich, T.P. Guilderson, A.G. Hogg, K.A. Hughen, B. Kromer, G. McCormac, S. Manning, C.B. Ramsey, R.W. Reimer, S. Remmele, J. Southon, M. Stuiver, S. Talamo, F.W. Taylor, J. van der Plicht, and C.E. Weyhenmeyer. 2004. IntCal04 Terrestrial radiocarbon age calibration, 26e0 ka BP. Radiocarbon 46: 1029–1058.

    Article  CAS  Google Scholar 

  • Reimer, P.J., B. Edouard, A.J. Bayliss, W. Beck, G.P. Blackwell, C.B. Ramsey, C.E. Buck, H. Cheng, R.L. Edwards, M. Friedrich, P.M. Grootes, T.P. Guilderson, H. Haflidason, I. Hajdas, C. Hatte, T.J. Heaton, D.L. Hoffman, A.G. Hogg, K.A. Hughen, K.F. Kaiser, B. Kromer, S.W. Manning, M. Niu, R.W. Reimer, D.A. Richards, E.M. Scott, J.R. Southon, R.A. Staff, C.S.M. Turney, and J. van der Plicht. 2013. IntCal13 and Marine13 Radiocarbon age calibration Curves 0–50,000 years cal BP. Radiocarbon 55 (4): 1869–1887.

    Article  CAS  Google Scholar 

  • Ridge, J.T., A.B. Rodriguez, F.J. Fodrie, N.L. Lindquist, M.C. Brodeur, S.E. Coleman, J.H. Grabowski, and E.J. Theuerkauf. 2015. Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise. Nature Publishing Group: 1–8.

  • Ridge, J.T., A.B. Rodriguez, and F.J. Fodrie. 2017a. Evidence of exceptional oyster-reef resilience to fluctuations in sea level. Ecology and Evolution 7 (23): 10409–10420.

    Article  Google Scholar 

  • Ridge, J.T., A.B. Rodriguez, and F.J. Fodrie. 2017b. Salt marsh and fringing oyster reef transgression in a shallow temperate Estuary: Implications for restoration, conservation and blue carbon. Estuaries and Coasts 40 (4): 1013–1027. https://doi.org/10.1007/s12237-016-0196-8.

    Article  CAS  Google Scholar 

  • Rodriguez, A.B., F.J. Fodrie, J.T. Ridge, N.L. Lindquist, E.J. Theuerkauf, S.E. Coleman, J.H. Grabowski, M.C. Brodeur, R.K. Gittman, D.A. Keller, and M.D. Kenworthy. 2014. Oyster reefs can outpace sea-level rise. Nature Climate Change 4 (6): 493–497.

    Article  Google Scholar 

  • Schulte, D.M., R.P. Burke, and R.N. Lipcius. 2009. Unprecedented restoration of a native oyster metapopulation. Science 325 (5944): 1124–1128.

    Article  CAS  Google Scholar 

  • Scyphers, S.B., S.P. Powers, K.L. Heck Jr., and D. Byron. 2011. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries. PLoS One 6 (8): e22396.

    Article  CAS  Google Scholar 

  • Spalding, M.D., S. Ruffo, C. Lacambra, I. Meliane, L.Z. Hale, C.C. Shepard, and M.W. Beck. 2014. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean & Coastal Management 90: 50–57.

    Article  Google Scholar 

  • Stokes, S., S. Wnderink,M. Lowe, G.Gereffi. 2012. Restoring Gulf oyster reefs Duke University Center on Globalization, Governance & Competitiveness. https://mississippiriverdelta.org//files/2012/07/CGGC_Oyster-Reef-Restoration.pdf

  • Stuiver, M., and P.J. Reimer. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35 (1): 215–230.

    Article  Google Scholar 

  • Stumpf, R.P. 1983. The process of sedimentation on the surface of a salt marsh. Estuarine, Coastal and Shelf Science 17 (5): 495–508.

    Article  Google Scholar 

  • Temmerman, S., P. Meire, T.J. Bouma, P.M. Herman, T. Ysebaert, and H.J. De Vriend. 2013. Ecosystem-based coastal defense in the face of global change. Nature 504 (7478): 79–83.

    Article  CAS  Google Scholar 

  • Walles, B., F.J. Fodrie, S. Nieuwhof, O.J.D. Jewell, P.M.J. Herman, and T. Ysebaert. 2016. Guidelines for evaluating performance of oyster habitat restoration should include tidal emersion: Reply to Baggett et al. Restoration Ecology 24 (1): 4–7.

    Article  Google Scholar 

  • White, M. E. & E.A. Wilson. 1996. Chapter 16: Predators, Pests, and Competitors. In the eastern oyster Crassostrea virginica eds. Kennedy, V. S., Newell, R. I. E. & Eble, A. F., 559–580. Maryland Sea Grant College.

  • Wong, M.C., C.H. Peterson, and M.F. Piehler. 2011. Evaluating estuarine habitats using secondary production as a proxy for food web support. Marine Ecology Progress Series 440: 11–25.

    Article  Google Scholar 

  • Zu Ermgassen, P.S.E., M.D. Spalding, R.E. Grizzle, and R.D. Brumbaugh. 2012. Quantifying the loss of a marine ecosystem service: Filtration by the eastern oyster in US estuaries. Estuaries and Coasts 36: 36–43.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Robin Kim, Rachel Quindlen, Carly Richardson, Andrew McMains, Charlie Deaton, and Max Tice-Lewis of the Coastal Geology lab at the UNC Institute of Marine Sciences for field and laboratory assistance from 2015 to 2020.

Funding

This research was supported by funding from the Department of Marine Fisheries Coastal Recreational Fishing License grant program (no. 6442).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molly C. Bost.

Additional information

Communicated by Judy Grassle

Supplementary Information

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bost, M.C., Rodriguez, A.B., Ridge, J.T. et al. Natural Intertidal Oyster Reef Growth Across Two Landscape Settings and Tidal Ranges. Estuaries and Coasts 44, 2118–2131 (2021). https://doi.org/10.1007/s12237-021-00925-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-021-00925-2

Keywords

Navigation