Skip to main content
Log in

2DNMR data inversion using locally adapted multi-penalty regularization

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Geologists and Reservoir Engineers routinely use time-domain nuclear magnetic resonance (NMR) to learn about the porous structure of rocks that hold underground fluids. In particular, two-dimensional NMR (2DNMR) technique is now gaining importance in a wide variety of applications. Crucial issue in 2DNMR analysis are the speed, robustness and accuracy of the data inversion process. This paper proposes a multi-penalty method with locally adapted regularization parameters for fast and accurate inversion of 2DNMR data. The method solves an unconstrained optimization problem whose objective function contains a data-fitting term, a single L1 penalty parameter and a multiple parameter L2 penalty. We propose an adaptation of the Fast Iterative Shrinkage and Thresholding (FISTA) method to solve the multi-penalty minimization problem, and an automatic procedure to compute all the penalty parameters. This procedure generalizes the Uniform Penalty principle introduced in [Bortolotti et al., Inverse Problems, 33(1), 2016]. The proposed approach allows us to obtain accurate 2D relaxation time distributions while keeping short the computation time. Results of numerical experiments on synthetic and real data prove that the proposed method is efficient and effective in reconstructing the peaks and the flat regions that usually characterize 2DNMR relaxation time distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, C.: Borehole Nuclear Magnetic Resonance (NMR). https://doi.org/10.5066/F73J3BW0

  2. Dunn, K.J., Bergman, D.J., Latorraca, G.A.: Nuclear Magnetic Resonance: Petrophysical and Logging Applications. Elsevier 2002. ISBN:0080537790, 9780080537795

  3. Beck, A.: First-Order Methods in Optimization. MOS-SIAM Series on Optimization. 978-1-61197-498-0

  4. Mitchell, J., Gladden, L.F., Chandrasekera, T.C., Fordham, E.J.: Low-field permanent magnets for industrial process and quality control. Progress in Nuclear Magnetic Resonance Spectroscopy, 76:1–60 (2014)

  5. Zhang, Y., Xiao, L., Li, X., Liao, G.: T1-D-T2 correlation of porous media with compressed sensing at low-field nmr. Magn. Reson. Imaging 56, 174–180. https://doi.org/10.1016/j.mri.2018.09.028 (2019)

  6. Venkataramanan, L., Song, Y.-Q., Hurlimann, M. D.: Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions. IEEE Trans. Signal Process. 50(5), 1017–1026. https://doi.org/10.1109/78.995059 (2002)

  7. Butler, J. P., Reeds, J. A., Dawson, S. V.: Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing. SIAM J. Numer. Anal. 18(3), 381–397 (1981)

  8. Chouzenoux, E., Moussaoui, S., Idier, J., Mariette, F.: Primal-dual interior point optimization for a regularized reconstruction of NMR relaxation time distributions, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8747–8750 (2013)

  9. Brizi, L., Camaiti, M., Bortolotti, V., Fantazzini, P., Blümich, B., Haber-Pohlmeier, S.: One and two-dimensional NMR to evaluate the performance of consolidants in porous media with a wide range of pore sizes: Applications to cultural heritage. Microporous and Mesoporous Materials (269), 186–190 (2018). https://doi.org/10.1016/j.micromeso.2017.08.014

  10. Bortolotti, V., Brown, R. J. S., Fantazzini, P., Landi, G., Zama, F.: Uniform penalty inversion of two-dimensional NMR relaxation data, Inverse Problems 33(1), 015003 (2016). https://doi.org/10.1088/1361-6420/33/1/015003

  11. Bortolotti, V., Brizi, L., Fantazzini, P., Landi, G., Zama, F.: Upen2DTool: A Uniform PENalty Matlab tool for inversion of 2D NMR relaxation data. SoftwareX 10, 100302 (2019) . https://doi.org/10.1016/j.softx.2019.100302

  12. Bertsekas, D.: Projected Newton methods for optimization problem with simple constraints. SIAM J. Control Optim. 20(2), 221–245 (1982)

  13. Bortolotti, V., Brizi, L., Fantazzini, P., Landi, G., Zama, F.: Filtering techniques for efficient inversion of two-dimensional Nuclear https://www.overleaf.com/project/5feb4e23a42b000518e150db Magnetic Resonance data, Journal of Phys. Conf. Ser. 904(2017), 012005. https://doi.org/10.1088/1742-6596/904/1/012005

  14. Bortolotti, V., Brown, R. J. S., Fantazzini, P., Landi, G., Zama, F.: I2DUPEN: Improved 2DUPEN algorithm for inversion of two-dimensional NMR data. Microporous Mesoporous Mater. 269, 195–198 (2018). proceedings of the 13th International Bologna Conference on Magnetic Resonance in Porous Media (MRPM13). https://doi.org/10.1016/j.micromeso.2017.04.038

  15. Zhou, X., Su, G., Wang, L., Nie, S., Ge, X.: The inversion of 2D NMR relaxometry data using L1 regularization, Journal of Magnetic Resonance 275, 46–54 (2017). https://doi.org/10.1016/j.jmr.2016.12.00https://doi.org/10.1016/j.jmr.2016.12.00

  16. Beck, A., Teboulle, M.: A Fast Iterative Shrinkage-Thresholding Algorithm for linear inverse problems, SIAM Journal on Imaging Sciences 2(1), 183–202 (2009). https://doi.org/10.1137/080716542

  17. Lazzaro, D., Piccolomini, E. L., Zama, F.: A fast splitting method for efficient Split Bregman iterations. Appl. Math. Comput. 357(C) 139–146 (2019)

  18. Lazzaro, D., Piccolomini, E. L., Zama, F.: A nonconvex penalization algorithm with automatic choice of the regularization parameter in sparse imaging. Inverse Probl. 35(8), 084002 (2019). https://doi.org/10.1088/1361-6420/ab1c6b

  19. Wu, Y., D’Agostino, C., Holland, D. J., Gladden, L. F.: In situ study of reaction kinetics using compressed sensing NMR. Chem. Commun. 50, 14137–14140 (2014). https://doi.org/10.1039/C4CC06051B

  20. Teal, P. D., Eccles, C.: Adaptive truncation of matrix decompositions and efficient estimation of NMR relaxation distributions, Inverse Problems 31(4), 045010 (2015). https://doi.org/10.1088/0266-5611/31/4/045010

  21. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net, J. R. Statist. Soc. B 67(2), 301–320 (2005)

  22. Berman, P., Levi, O., Parmet, Y., Saunders, M., Wiesman, Z.: Laplace inversion of low-resolution NMR relaxometry data using sparse representation methods. Concepts Magn. Reson. Part A 42(3), 72–88 (2013). https://doi.org/10.1002/cmr.a.21263

  23. Campisi-Pinto, S., Levi, O., Benson, D., Cohen, M., Resende, M. T., Saunders, M., Linder, C., Wiesman, Z.: Analysis of the regularization parameters of primal–dual interior method for convex objectives applied to 1H low field Nuclear Magnetic Resonance data processing. Appl. Magn. Reson. 49(10), 1129–1150 (2018). https://doi.org/10.1007/s00723-018-1048-4

  24. Miller, K.: Least squares methods for ill-posed problems with a prescribed bound. SIAM J. Math. Anal. 1, 52–74 (1970)

  25. Scrivener, K., Snellings, R., Lothenbach, B. (eds.): A Practical Guide to Microstructural Analysis of Cementitious Materials, 1st edn. CRC Press, Boca Raton (2016). https://doi.org/10.1201/b19074

  26. Van Landeghem, M., Haber, A., D’espinose De Lacaillerie, J.B., Blümich, B.: Analysis of multisite 2D relaxation exchange NMR. Concepts Magn. Reson. 36A, 153–169 (2010). https://doi.org/10.1002/cmr.a.20157

Download references

Acknowledgements

This work was partially supported by Gruppo Nazionale per il Calcolo Scientifico - Istituto Nazionale di Alta Matematica (GNCS-INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Zama.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortolotti, V., Landi, G. & Zama, F. 2DNMR data inversion using locally adapted multi-penalty regularization. Comput Geosci 25, 1215–1228 (2021). https://doi.org/10.1007/s10596-021-10049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10049-y

Keywords

Navigation