Skip to main content

Advertisement

Log in

Promising nature-based activated carbon derived from flowers of Borassus flabellifer for supercapacitor applications

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Recently, activated carbon derived from different agricultural by-products or bio-waste is receiving a great deal of attention due to its low or zero cost and environmental friendliness. In this work, flowers obtained from Borassus flabellifer (BFL) is used as a carbon source and potassium hydroxide (KOH) as activation precursor to produce activated carbon with high specific surface area and predominant micropore. The obtained carbon material was activated at 650 °C. The as-prepared sample had a specific surface area of 930.3 m2/g and pore size distribution of 1.96 nm. The carbon material exhibited high electrochemical performance with a specific capacitance of 247 F/g at 0.5 A/g in 1 M H2SO4 electrolyte and an excellent cycling stability of 94% after 2500 cycles. A specific energy of 101.1 Wh/kg and a specific power of 4500 kW/kg were obtained. Based on the electrochemical properties exhibited by BFL, it could be used as an excellent electrode material for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abioye AM, Ani FN (2015) Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew Sustain Energy Rev 52:1282–1293

    Article  CAS  Google Scholar 

  2. Conway BE (1991) Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 138(6):1539

    Article  CAS  Google Scholar 

  3. Chen S-M, Ramachandran R, Mani V, Saraswathi R (2014) Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review. Int J Electrochem Sci 9(8):4072–4085

    Google Scholar 

  4. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91(1):37–50

    Article  CAS  Google Scholar 

  5. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27

    Article  CAS  Google Scholar 

  6. Kiamahalleh MV, Zein SHS, Najafpour G, SataBuniran SAS (2012) Multiwalled carbon nanotubes based nanocomposites for supercapacitors: a review of electrode materials. NANO 7(02):1230002

    Article  Google Scholar 

  7. Choi H, Yoon H (2015) Nanostructured electrode materials for electrochemical capacitor applications. Nanomaterials 5(2):906–936

    Article  CAS  Google Scholar 

  8. Halper MS, Ellenbogen JC (2006) Supercapacitors: a brief overview. The MITRE Corporation, McLean, Virginia, USA, pp 1–34

    Google Scholar 

  9. Li L, Hu ZA, An N, Yang YY, Li ZM, Wu HY (2014) Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J Phys Chem C 118(40):22865–22872

    Article  CAS  Google Scholar 

  10. Iro ZS, Subramani C, Dash S (2016) A brief review on electrode materials for supercapacitor. Int J Electrochem Sci 11:10628–10643

    Article  CAS  Google Scholar 

  11. Burke A, Zhao H (2015) Applications of supercapacitors in electric and hybrid vehicles. ITS

    Google Scholar 

  12. Somayajula D, Crow ML (2015) An integrated dynamic voltage restorer-ultracapacitor design for improving power quality of the distribution grid. IEEE Transac Sustain Energy 6(2):616–624

    Article  Google Scholar 

  13. Fahmi M, Rajkumar R, Arelhi R, Isa D (2014) The performance of a solar PV system using supercapacitor and varying loads. 2014 IEEE student conference on research and development. IEEE, pp 1–5

    Google Scholar 

  14. Moreno-Fernandez G, Ibañez J, Rojo JM, Kunowsky M (2017) Activated Carbon Fiber Monoliths as Supercapacitor Electrodes. Advances in Materials Science and Engineering 2018:1–8. https://doi.org/10.1155/2017/3625414

  15. Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  CAS  Google Scholar 

  16. Li J (2012) Review of electrochemical capacitors based on carbon nanotubes and graphene. Graphene 1(01):1

    Article  Google Scholar 

  17. Genc R, Alas MO, Harputlu E, Repp S, Kremer N, Castellano M, Colak SG, Ocakoglu K, Erdem E (2017) High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots. Scientific Reports 7(1):11222

    Article  Google Scholar 

  18. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang J-G, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano energy 1(2):195–220

    Article  CAS  Google Scholar 

  19. Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2(2):159–173

    Article  CAS  Google Scholar 

  20. Gao Z, Zhang Y, Song N, Li X (2017) Biomass-derived renewable carbon materials for electrochemical energy storage. Mater Res Lett 5(2):69–88

    Article  CAS  Google Scholar 

  21. Gao L, Lu H, Lin H, Sun X, Xu J, Liu D, Li Y (2014) KOH direct activation for preparing activated carbon fiber from polyacrylonitrile-based pre-oxidized fiber. Chem Res Chin Univ 30(3):441–446

    Article  CAS  Google Scholar 

  22. González-García P, Centeno T, Urones-Garrote E, Ávila-Brande D, Otero-Díaz L (2013) Microstructure and surface properties of lignocellulosic-based activated carbons. Appl Surf Sci 265:731–737

    Article  Google Scholar 

  23. Marsh H, Reinoso FR (2006) Activated carbon. Elsevier

    Book  Google Scholar 

  24. Farma R, Deraman M, Awitdrus A, Talib I, Taer E, Basri N, Manjunatha J, Ishak M, Dollah B, Hashmi S (2013) Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Biores Technol 132:254–261

    Article  CAS  Google Scholar 

  25. Njoku V, Foo K, Hameed B (2013) Microwave-assisted preparation of pumpkin seed hull activated carbon and its application for the adsorptive removal of 2,4-dichlorophenoxyacetic acid. Chem Eng J 215:383–388

    Article  Google Scholar 

  26. Nabais JV, Laginhas C, Carrott MR, Carrott P, Amorós JC, Gisbert AN (2013) Surface and porous characterisation of activated carbons made from a novel biomass precursor, the esparto grass. Appl Surf Sci 265:919–924

    Article  CAS  Google Scholar 

  27. Sych N, Trofymenko S, Poddubnaya O, Tsyba M, Sapsay V, Klymchuk D, Puziy A (2012) Porous structure and surface chemistry of phosphoric acid activated carbon from corncob. Appl Surf Sci 261:75–82

    Article  CAS  Google Scholar 

  28. Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1(21):6462–6470

    Article  CAS  Google Scholar 

  29. Soleimani M, Kaghazchi T (2008) Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones—an agricultural waste. Biores Technol 99(13):5374–5383

    Article  CAS  Google Scholar 

  30. Okman I, Karagöz S, Tay T, Erdem M (2014) Activated carbons from grape seeds by chemical activation with potassium carbonate and potassium hydroxide. Appl Surf Sci 293:138–142

    Article  CAS  Google Scholar 

  31. Shang H, Lu Y, Zhao F, Chao C, Zhang B, Zhang H (2015) Preparing high surface area porous carbon from biomass by carbonization in a molten salt medium. RSC Advances 5(92):75728–75734

    Article  CAS  Google Scholar 

  32. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7(4):1250–1280

    Article  CAS  Google Scholar 

  33. Patil B, Kulkarni K (2012) Development of high surface area activated carbon from waste material. Int J Adv Eng Res Stud 1(2):109–113

    Google Scholar 

  34. Hirunpraditkoon S, Tunthong N, Ruangchai A, Nuithitiku K (2011) Adsorption capacities of activated carbons prepared from bamboo by KOH activation. World Acad Sci Eng Technol 78:711–715

    Google Scholar 

  35. Babel K, Jurewicz K (2004) KOH activated carbon fabrics as supercapacitor material. J Phys Chem Solids 65(2–3):275–280

    Article  CAS  Google Scholar 

  36. Maciá-Agulló J, Moore B, Cazorla-Amorós D, Linares-Solano A (2004) Activation of coal tar pitch carbon fibres: physical activation vs. chemical activation. Carbon 42(7):1367–1370

    Article  Google Scholar 

  37. Abechi S, Gimba C, Uzairu A, Dallatu Y (2013) Preparation and characterization of activated carbon from palm kernel shell by chemical activation. Res J Chem Sci 3(1):54–61

    CAS  Google Scholar 

  38. Hui TS, Zaini MAA (2015) Potassium hydroxide activation of activated carbon: a commentary. Carbon letters 16(4):275–280

    Article  Google Scholar 

  39. Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao S-Z, Lu G-Q (2011) Preparation of capacitor’s electrode from sunflower seed shell. Biores Technol 102(2):1118–1123

    Article  CAS  Google Scholar 

  40. Li XF, Xu Q, Fu Y, Guo QX (2014) Preparation and characterization of activated carbon from Kraft lignin via KOH activation. Environ Progress Sustain Energy 33(2):519–526

    Article  CAS  Google Scholar 

  41. Dineshkumar R, Murugan N, Rani JA, Arthanareeswari M, Kamaraj P, Devikala S, Duraisamy N, Sundramoorthy AK (2019) Synthesis of highly fluorescent carbon dots from Plectranthus amboinicus as a fluorescent sensor for Ag+ ion. Mater Res Express 6(10):104006

    Article  CAS  Google Scholar 

  42. Murugan N, Prakash M, Jayakumar M, Sundaramurthy A, Sundramoorthy AK (2019) Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’sensor probe for selective detection of Cu2+. Appl Surf Sci 476:468–480

    Article  CAS  Google Scholar 

  43. Murugan N, Sundramoorthy AK (2018) Green synthesis of fluorescent carbon dots from Borassus flabellifer flowers for label-free highly selective and sensitive detection of Fe 3+ ions. New J Chem 42(16):13297–13307

    Article  CAS  Google Scholar 

  44. Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marín F, Moreno-Castilla C (2012) Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Biores Technol 111:185–190

    Article  CAS  Google Scholar 

  45. Ruan C, Ai K, Lu L (2014) Biomass-derived carbon materials for high-performance supercapacitor electrodes. RSC Advances 4(58):30887–30895

    Article  CAS  Google Scholar 

  46. Xu B, Chen Y, Wei G, Cao G, Zhang H, Yang Y (2010) Activated carbon with high capacitance prepared by NaOH activation for supercapacitors. Mater Chem Phys 124(1):504–509

    Article  CAS  Google Scholar 

  47. Munaiah Y, Raj BGS, Kumar TP, Ragupathy P (2013) Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior. J Mater Chem A 1(13):4300–4306

    Article  CAS  Google Scholar 

  48. Muniandy L, Adam F, Mohamed AR, Ng E-P (2014) The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater 197:316–323

    Article  CAS  Google Scholar 

  49. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24(15):2047–2050

    Article  Google Scholar 

  50. Nagarajan RD, Sundramoorthy AK (2019) One-pot electrosynthesis of silver nanorods/graphene nanocomposite using 4-sulphocalix [4] arene for selective detection of oxalic acid. Sensors and Actuators B: Chem 301:127132

    Article  CAS  Google Scholar 

  51. Nagarajan RD, Murugan P, Sundramoorthy AK (2020) Selective electrochemical sensing of NADH and NAD+ using graphene/tungstate nanocomposite modified electrode. ChemistrySelect 5(46):14643–14651

    Article  CAS  Google Scholar 

  52. Zhao H, Wang F, Ning Y, Zhao B, Yin F, Lai Y, Zheng J, Hu X, Fan T, Tang J (2013) Green “planting” nanostructured single crystal silver. Scientific Reports 3:1511

    Article  Google Scholar 

  53. Wang K, Zhao N, Lei S, Yan R, Tian X, Wang J, Song Y, Xu D, Guo Q, Liu L (2015) Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim Acta 166:1–11

    Article  CAS  Google Scholar 

  54. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87(9–10):1051–1069

    Article  CAS  Google Scholar 

  55. Chen L-F, Zhang X-D, Liang H-W, Kong M, Guan Q-F, Chen P, Wu Z-Y, Yu S-H (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8):7092–7102

    Article  CAS  Google Scholar 

  56. Qu W-H, Xu Y-Y, Lu A-H, Zhang X-Q, Li W-C (2015) Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Biores Technol 189:285–291

    Article  CAS  Google Scholar 

  57. Iro ZS, Subramani C, Kesavan T, Dash S, Sasidharan M, Sundramoorthy AK (2017) MnO2 nanorods/SiO2 sphere coated on single-wall carbon nanotubes as supercapacitor electrode for high energy storage applications. Mater Res Express 4(12):124004

    Article  Google Scholar 

  58. Taberna P, Simon P, Fauvarque J-F (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150(3):A292–A300

    Article  CAS  Google Scholar 

  59. Yoon Y, Lee K, Baik C, Yoo H, Min M, Park Y, Lee SM, Lee H (2013) Anti-solvent derived non-stacked reduced graphene oxide for high performance supercapacitors. Adv Mater 25(32):4437–4444

    Article  CAS  Google Scholar 

  60. Yan J, Liu J, Fan Z, Wei T, Zhang L (2012) High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon 50(6):2179–2188

    Article  CAS  Google Scholar 

  61. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13(39):17615–17624

    Article  CAS  Google Scholar 

  62. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49(9):2917–2925

    Article  CAS  Google Scholar 

Download references

Acknowledgements

ZSI thanks Tertiary Education Trust Fund Nigeria. On behalf of all the authors, the corresponding author states that there is no conflict of interest. AKS sincerely thanks Department of Science and Technology (International Bilateral Cooperation Division) for financial support through “INDO-RUSSIA Project (No. INT/RUS/RFBR/385)”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zaharaddeen S. Iro or Ashok K. Sundramoorthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iro, Z.S., Subramani, C., Rajendran, J. et al. Promising nature-based activated carbon derived from flowers of Borassus flabellifer for supercapacitor applications. Carbon Lett. 31, 1145–1153 (2021). https://doi.org/10.1007/s42823-021-00237-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00237-2

Keywords

Navigation