Skip to main content
Log in

Performance Analysis of Enhanced MFO-Based Online-Tuned Split-Range PID Controller

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study presents online-tuning approach using the moth flame optimization (MFO) algorithm to optimize the parameters of PID and modified PID (I-PD) controllers used in the split-range scheme to control the temperature of the mixing process. The performance of these controllers is investigated for the individual temperature setpoints in terms of settling time and compared with performances obtained using offline-tuning approach with the MFO algorithm. The simulation results show a significant improvement with online-tuning approach as compared to offline approach. To further improve the performance, this study proposes modifications in the original MFO algorithm in three phases: by changing the spiral path, by changing the initial population based on the opposition theory, and by a change in the selection of the flames for the updating mechanism. A new version of MFO algorithm is obtained by combining the above-mentioned modifications and used to tune the PID and I-PD controllers in both offline and online modes. Further, the new algorithm is tested for both the controllers with respect to the effect of system dynamics and the effect of process disturbance. The results obtained after validation show that the use of the new version of the MFO algorithm further improves the online tuning of both the controllers. The simulation results also clearly establish the superior performance of the modified PID (I-PD) controller over the PID controller under all conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kofinas, P.; Dounis, A.I.: Online tuning of a PID controller with a fuzzy reinforcement learning MAS for flow rate control of a desalination unit. Electronics 8(2), 231 (2019)

    Article  Google Scholar 

  2. Hernández-Alvarado, R.; García-Valdovinos, L.; Salgado-Jiménez, T.; Gómez-Espinosa, A.; Fonseca-Navarro, F.: Neural network-based self-tuning PID control for underwater vehicles. Sensors. 16(9), 1429 (2016)

    Article  Google Scholar 

  3. Daraz, A.; Malik, S.A.; Haq, I.U.; Khan, K.B.; Laghari, G.F.; Zafar, F.: Modified PID controller for automatic generation control of multi-source interconnected power system using fitness dependent optimizer algorithm. PLoS ONE 15(11), e0242428 (2020)

    Article  Google Scholar 

  4. Chakraborty, S.; Ghosh, S.; Kumar Naskar, A.: I-PD controller for integrating plus time-delay processes. IET Control Theory Appl. 11(17), 3137–3145 (2017)

    Article  MathSciNet  Google Scholar 

  5. Erkan, K.; Yalçın, B.C.; Garip, M.: Three-axis gap clearance I-PD controller design based on coefficient diagram method for 4-pole hybrid electromagnet. Automatika. 58(2), 147–167 (2017)

    Article  Google Scholar 

  6. Zhou, X., Gao, H., Jia, Y., Li, L., Zhao, L., Yu, R.: Parameter Optimization on FNN/PID compound controller for a three-axis inertially stabilized platform for aerial remote sensing applications. J. Sensors. 1–15 (2019).

  7. Colombino, M., Dall’Anese, E., Bernstein, A.: Online optimization as a feedback controller: stability and tracking. IEEE Trans. Control Netw. Syst. 7(1), 422–432 (2020).

  8. Chen, H.; Bowels, S.; Zhang, B.; Fuhlbrigge, T.: Controller parameter optimization for complex industrial system with uncertainties. Meas. Control. 52(7–8), 888–895 (2019)

    Article  Google Scholar 

  9. Tamilselvan, G.M.; Aarthy, P.: Online tuning of fuzzy logic controller using Kalman algorithm for conical tank system. J. Appl. Res. Technol. 15(5), 492–503 (2017)

    Article  Google Scholar 

  10. El-Gendy, E.M.; Saafan, M.M.; Elksas, M.S.; Saraya, S.F.; Areed, F.F.G.: Applying hybrid genetic–PSO technique for tuning an adaptive PID controller used in a chemical process. Soft Comput. 24(5), 3455–3474 (2020)

    Article  Google Scholar 

  11. Memon, F.; Shao, C.: An optimal approach to online tuning method for PID type iterative learning control. Int. J. Control. Autom. Syst. 18(8), 1926–1935 (2020)

    Article  Google Scholar 

  12. Davanipour, M.; Javanmardi, H.; Goodarzi, N.: Chaotic self-tuning PID controller based on fuzzy wavelet neural network model. Iran. J. Sci. Technol. Trans. Electr. Eng. 42(3), 357–366 (2018)

    Article  Google Scholar 

  13. Sapuppo, F.; Schembri, F.; Fortuna, L.; Bucolo, M.: Microfluidic circuits and systems. IEEE Circuits Syst. Mag. 9(3), 6–19 (2009)

    Article  Google Scholar 

  14. McDaid, A.J.; Aw, K.C.; Haemmerle, E.; Xie, S.Q.: Control of IPMC Actuators for Microfluidics With Adaptive “Online” Iterative Feedback Tuning. IEEE/ASME Trans. Mechatronics. 17(4), 789–797 (2012)

    Article  Google Scholar 

  15. Mohanty, B.: Performance analysis of moth flame optimization algorithm for AGC system. Int. J. Model. Simul. 39(2), 73–87 (2019)

    Article  MathSciNet  Google Scholar 

  16. AbdelAty, A.M.; Yousri, D.A.; Said, L.A.; Radwan, A.G.: Identifying the parameters of cole impedance model using magnitude only and complex impedance measurements: A metaheuristic optimization approach. Arab. J. Sci. Eng. 45, 6541–6558 (2020)

    Article  Google Scholar 

  17. Aziz, M.A.E.; Ewees, A.A.; Hassanien, A.E.: Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation. Expert Syst. Appl. 83, 242–256 (2017)

    Article  Google Scholar 

  18. Alzaqebah, M.; Alrefai, N.; Ahmed, E.A.E.; Jawarneh, S.; Alsmadi, M.K.: Neighborhood search methods with Moth Optimization algorithm as a wrapper method for feature selection problems. Int. J. Electr. Comput. Eng. 10(4), 3672 (2020)

    Google Scholar 

  19. Ng Shin Mei, R., Sulaiman, M.H., Mustaffa, Z., Daniyal, H.: Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique. Appl. Soft Comput. 59, 210–222 (2017).

  20. Kaur, A.; Sharma, S.; Mishra, A.: Performance optimization of cognitive decision engine for CR-based IoTs using various parameter-less meta-heuristic techniques. Arab. J. Sci. Eng. 44(11), 9499–9515 (2019)

    Article  Google Scholar 

  21. Yıldız, B.S.; Yıldız, A.R.: Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Mater. Test. 59(5), 425–429 (2017)

    Article  Google Scholar 

  22. Vishnoi, V., Tiwari, S., Singla, R.: Performance analysis of moth flame optimization-based split-range PID controller. MAPAN. 1–13 (2020).

  23. Wang, M.; Chen, H.; Yang, B.; Zhao, X.; Hu, L.; Cai, Z.; Huang, H.; Tong, C.: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267, 69–84 (2017)

    Article  Google Scholar 

  24. Soliman, G.M., Khorshid, M.M., Abou-El-Enien, T.H.: Modified moth-flame optimization algorithms for terrorism prediction. Int. J. Appl. or Innov. Eng. Manag. 5(7), 47–58 (2016).

  25. Reddy, S.; Panwar, L.K.; Panigrahi, B.K.; Kumar, R.: Solution to unit commitment in power system operation planning using binary coded modified moth flame optimization algorithm (BMMFOA): A flame selection based computational technique. J. Comput. Sci. 25, 298–317 (2018)

    Article  MathSciNet  Google Scholar 

  26. Zhang, L.; Mistry, K.; Neoh, S.C.; Lim, C.P.: Intelligent facial emotion recognition using moth-firefly optimization. Knowl. Based Syst. 111, 248–267 (2016)

    Article  Google Scholar 

  27. Khalilpourazari, S.; Khalilpourazary, S.: An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems. Soft Comput. 23(5), 1699–1722 (2019)

    Article  Google Scholar 

  28. Li, C.; Niu, Z.; Song, Z.; Li, B.; Fan, J.; Liu, P.X.: A double evolutionary learning moth-flame optimization for real-parameter global optimization problems. IEEE Access. 6, 76700–76727 (2018)

    Article  Google Scholar 

  29. Jain, P.; Saxena, A.: An opposition theory enabled moth flame optimizer for strategic bidding in uniform spot energy market. Eng. Sci. Technol. an Int. J. 22(4), 1047–1067 (2019)

    Article  Google Scholar 

  30. Mirjalili, S.: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  31. Sun, W.; Wang, J.; Wei, X.: An improved whale optimization algorithm based on different searching paths and perceptual disturbance. Symmetry. 10(6), 210 (2018)

    Article  Google Scholar 

  32. Tizhoosh, H.R.: Opposition-Based Learning: A New Scheme for Machine Intelligence. In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06). pp. 695–701. IEEE (2005)

  33. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A.: Opposition-based differential evolution. IEEE Trans. Evol. Comput. 12(1), 64–79 (2008)

    Article  Google Scholar 

  34. Gupta, S.; Deep, K.: An efficient grey wolf optimizer with opposition-based learning and chaotic local search for integer and mixed-integer optimization problems. Arab. J. Sci. Eng. 44(8), 7277–7296 (2019)

    Article  Google Scholar 

  35. Wang, B.: A novel artificial bee colony algorithm based on modified search strategy and generalized opposition-based learning. J. Intell. Fuzzy Syst. 28(3), 1023–1037 (2015)

    Article  MathSciNet  Google Scholar 

  36. Dinkar, S.K.; Deep, K.: An efficient opposition based Lévy Flight Antlion optimizer for optimization problems. J. Comput. Sci. 29, 119–141 (2018)

    Article  Google Scholar 

  37. Sapre, S.; Mini, S.: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization. Soft Comput. 23, 6023–6041 (2019)

    Article  Google Scholar 

  38. Gaidhane, P.J.; Nigam, M.J.: A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems. J. Comput. Sci. 27, 284–302 (2018)

    Article  Google Scholar 

  39. Dinkar, S.K.; Deep, K.: Accelerated opposition-based antlion optimizer with application to order reduction of linear time-invariant systems. Arab. J. Sci. Eng. 44(3), 2213–2241 (2019)

    Article  Google Scholar 

  40. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A.: Opposition versus randomness in soft computing techniques. Appl. Soft Comput. 8(2), 906–918 (2008)

    Article  Google Scholar 

  41. Sheng, H.; Li, C.; Wang, H.; Yan, Z.; Xiong, Y.; Cao, Z.; Kuang, Q.: Parameters extraction of photovoltaic models using an improved moth-flame optimization. Energies. 12(18), 3527 (2019)

    Article  Google Scholar 

  42. Kaur, K.; Singh, U.; Salgotra, R.: An enhanced moth flame optimization. Neural Comput. Appl. 32(7), 2315–2349 (2020)

    Article  Google Scholar 

  43. Pelusi, D.; Mascella, R.; Tallini, L.; Nayak, J.; Naik, B.; Deng, Y.: An improved moth-flame optimization algorithm with hybrid search phase. Knowl. Based Syst. 191, 105277 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Vishnoi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnoi, V., Tiwari, S. & Singla, R. Performance Analysis of Enhanced MFO-Based Online-Tuned Split-Range PID Controller. Arab J Sci Eng 46, 9673–9689 (2021). https://doi.org/10.1007/s13369-021-05470-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05470-5

Keywords

Navigation