Skip to main content
Log in

Surface Roughness Analysis of 3D Printed Microchannels and Processing Characteristics of Abrasive Flow Finishing

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Because of the low surface roughness of three-dimensional (3D) printed microchannels, in some environments, the use requirements cannot be met, and, at the same time, they are difficult to process. Therefore, a surface roughness analysis of 3D printed microchannels and post-processing using abrasive flow technology are proposed. The value of the inner surface roughness of the straight pipe part was calculated by using the least-squares method combined with the definite integral. Using the equal area principle, MATLAB curve fitting was used to numerically calculate the semicircular pipe section, and the relationship between the value of surface roughness and the bending radius of the scanning layer thickness is given. Use MATLAB image processing technology to study the processing area. The roughness of the inner wall of the pipeline was analyzed by laser confocal, stereo, and scanning electron microscopes. The results show that the roughness of the inner surface of the pipe increases with an increase in the thickness of the sweeping layer, an increase in the inclination angle, and a decrease in the radius of curvature. In the case of abrasive flow processing, the longer the processing time, the greater the grinding amount and the greater the amount of grinding outside the pipe wall in each one-way machining; further, the processing has obvious directionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13.
Fig. 14
Fig. 15
Fig. 16
Fig. 17.
Fig. 18

Similar content being viewed by others

References

  1. Xu, C.; Dai, G.; Hong, Y.: Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications. Acta Biomater. 95, 50–59 (2019)

    Article  Google Scholar 

  2. Matta, A.K.; Kodali, S.P.; Ivvala, J.; Kumar, P.J.: Metal prototyping the future of automobile industry: a review. Mater. Today: Proc. 5(9), 17597–17601 (2018)

    Google Scholar 

  3. O’Hara, W.J.; Kish, J.M.; Werkheiser, M.J.: Turn-key use of an onboard 3D printer for international space station operations. Addit. Manuf. 24, 560–565 (2018)

    Google Scholar 

  4. Kruth, J.P.; Leu, M.C.; Nakagawa, T.: Progress in additive manufacturing and rapid prototyping. CIRP Ann. Manuf. Technol. 47(2), 525–540 (1998)

    Article  Google Scholar 

  5. Wohlers, T.: Future potential of rapid prototyping and manufacturing around the world. Rapid Prototyp. J. 1(1), 4–10 (1995)

    Article  Google Scholar 

  6. Lalehpour, A.; Janeteas, C.; Barari, A.: Surface roughness of FDM parts after post-processing with acetone vapor bath smoothing process. Int. J. Adv. Manuf. Technol. 95, 1505–1520 (2017)

    Article  Google Scholar 

  7. Ayrilmis, N.: Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament. Polym. Test. 71, 163–166 (2018)

    Article  Google Scholar 

  8. Song, B.; Dong, S.; Zhang, B., et al.: Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Mater. Des. 35, 120–125 (2012)

    Article  MathSciNet  Google Scholar 

  9. Mumtaz, K.; Hopkinson, N.: Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyp. J. 15(2), 96–103 (2009)

    Article  Google Scholar 

  10. Bhaduri, D.; Penchev, P.; Batal, A., et al.: Laser polishing of 3D printed mesoscale components. Appl. Surf. Sci. 405, 29–46 (2017)

    Article  Google Scholar 

  11. Zhang, B.; Xiaohua, L.; Bai, J., et al.: Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Mater. Des. 116, 531–537 (2017)

    Article  Google Scholar 

  12. Atzeni, E.; Barletta, M.; Calignano, F.: Abrasive fluidized bed (AFB) finishing of AlSi10Mg substrates manufactured by direct metal laser sintering (DMLS). Addit. Manuf. 10, 15–23 (2016)

    Google Scholar 

  13. Uhlmann, E.; Schmiedel, C.; Wendler, J.: CFD Simulation of the abrasive flow machining process. Proc. Cirp 31, 209–214 (2015)

    Article  Google Scholar 

  14. Zhang, J.; Chaudhari, A.; Wang, H.: Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316L stainless steel. J. Manuf. Process. 45(Sep), 710–719 (2019)

    Article  Google Scholar 

  15. Singh, P.; Singh, L.; Sehijpal, S.: Manufacturing and performance analysis of mechanically alloyed magnetic abrasives for magneto abrasive flow finishing. J. Manuf. Process. 50, 161–169 (2020)

    Article  Google Scholar 

  16. Williams, R.E.; Melton, V.L.: Abrasive flow finishing of stereolithography prototypes. Rapid Prototyp. J. 4(2), 56–67 (1998)

    Article  Google Scholar 

  17. Pandey, P.M.; Reddy, N.V.; Dhande, S.G.: Improvement of surface finish by staircase machining in fused deposition modeling. J. Mater. Process. Technol. 132(1–3), 323–331 (2003)

    Article  Google Scholar 

  18. Pandey, P.M.; Reddy, N.V.; Dhande, S.G.: Real time adaptive slicing for fused deposition modelling. Int. J. Mach. Tools Manuf. 43(1), 61–71 (2003)

    Article  Google Scholar 

  19. Thrimurthulu, K.; Pandey, P.M.; Reddy, N.V.: Optimum part deposition orientation in fused deposition modeling. Int. J. Mach. Tools Manuf. 44(6), 585–594 (2004)

    Article  Google Scholar 

  20. Boschetto, A.; Bottini, L.: Surface improvement of fused deposition modeling parts by barrel finishing. Rapid Prototyp. J. 21(6), 686–696 (2015)

    Article  Google Scholar 

  21. Jain, R.K.; Jain, V.K.: Stochastic simulation of active grain density in abrasive flow machining. J. Mater. Process. Technol. 152(1), 17–22 (2003)

    Article  Google Scholar 

  22. Gorana, V.K.; Jain, V.K.; Lal, G.K.: Experimental investigation into cutting forces and active grain density during abrasive flow machining. Int. J. Mach. Tools Manuf. 44(2), 201–211 (2003)

    Google Scholar 

  23. Gorana, V.K.; Jain, V.K.; Lal, G.K.: Forces prediction during material deformation in abrasive flow machining. Wear 260(1), 128–139 (2004)

    Google Scholar 

  24. Jain, R.K.; Jain, V.K.: Specific energy and temperature determination in abrasive flow machining process. Int. J. Mach. Tools Manuf. 41(12), 1689–1704 (2001)

    Article  Google Scholar 

  25. Kumar, S.S.; Hiremath, S.S.: A review on abrasive flow machining (AFM). Proc. Technol. 25, 1297–1304 (2016)

    Article  Google Scholar 

  26. Finnie, I.: Some observations on the erosion of ductile metals. Wear 19(1), 81–90 (1972)

    Article  Google Scholar 

  27. Jain, V.K.: Magnetic field assisted abrasive based micro-/nano-finishing. J. Mater. Process. Tech. 209(20), 6022–6038 (2009)

    Article  Google Scholar 

  28. Jayswal, S.C.; Jain, V.K.; Dixit, P.M.: Modeling and simulation of magnetic abrasive finishing process. Int. J. Adv. Manuf. Technol. 26(5–6), 477–490 (2005)

    Article  Google Scholar 

  29. Khitun, A.; Bao, M.; Wang, K.L.: Magnetic cellular nonlinear network with spin wave bus for image processing. Superlattices Microstruct. 47(3), 464–483 (2010)

    Article  Google Scholar 

  30. Mora, C.; Kwan, A.: Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cem. Concr. Res. 30(3), 351–358 (2000)

    Article  Google Scholar 

  31. Szmaja, W.: Digital image processing system for magnetic domain observation in SEM. J. Magn. Magn. Mater. 189(3), 353–365 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are also grateful for the financial aids from the National key R&D Project (Grant No: 2017YFB1104601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, Y., Shi, Y., Liu, J. et al. Surface Roughness Analysis of 3D Printed Microchannels and Processing Characteristics of Abrasive Flow Finishing. Arab J Sci Eng 47, 801–812 (2022). https://doi.org/10.1007/s13369-020-05260-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05260-5

Keywords

Navigation