Skip to main content
Log in

Numerical Simulation of a Single-compartment Household Refrigerator During Start-up Transient and Stationary Cyclic Operation with Different Refrigerant Charges

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A numerical study of the start-up transient and cyclic stationary operation of a single-compartment household refrigerator and an analysis of performance quantities at different refrigerant charges are performed. The working fluid is HFC-134a. The numerical model was developed using the commercial software GT-SUITE®. The individual models available in the software were applied for each component of the refrigeration system (compressor, evaporator, condenser, capillary tube and refrigerated compartment). The numerical model considers a solution of mass, momentum and energy principles using a distributed formulation in space and implicit in time. The ambient temperature and refrigerant charge of the refrigeration system are input data. The inside air temperature, power consumption and discharge and suction pressure were compared against literature experimental data for the start-up at different ambient temperatures (32 °C and 43 °C) and cyclic operations at 32 °C. Results for different refrigerant charges are presented considering both ambient temperatures. The numerical results showed reasonable agreement in comparison with literature experimental data, even for the different refrigerant charges. The maximum error for the inside air temperature is 4 °C and 2.5 °C during pull-down tests at, at 32 °C and 43 °C, respectively. The model failed to represent the pressure and power consumption peak during start-up, due to the simplicity of the compressor model. However, the steady-state values obtained by the numerical model are in good agreement with the experimental data. The same can be stated for the discharge and suction pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Constant (−)

A i :

Internal tube cross-sectional area

A s :

Internal tube superficial area

B :

Constant (−)

C f :

Friction coefficient (−)

C p :

Pressure coefficient (−)

dz :

Control volume length (m)

D :

Tube diameter

E :

Constant (−)

F :

Constant (−)

g :

Gravity (m/s2)

G :

Mass velocity (kg/m2 s)

h :

Specific enthalpy (J/kg)

H :

Height (m)

m :

Mass (kg)

\(\dot{m}\) :

Mass flow rate (kg/s)

n rpm :

Compressor speed (rpm)

P :

Pressure (Pa)

u :

Average velocity (m/s)

t :

Time (s)

T :

Temperature (°C)

\(\overline{T}\) :

Average temperature (°C)

V :

Volume (m3)

V D :

Compressor displacement (m3)

\(\overline{U}\overline{A}_{{{\text{gas}}}}\) :

Global conductance of the gasket (W/K)

x :

Refrigerant quality (−)

\(\dot{Q}\) :

Heat transfer rate (W)

\(\dot{W}\) :

Power (W)

ε :

Void fraction (-)

\(\hbar\) :

Convection heat transfer coefficient (W/m2.K)

ρ :

Density (kg/m3)

η :

Efficiency (−) 

1:

Inlet

2:

Outlet

a:

Air

amb:

Ambient

cab:

Cabinet

comp:

Compressor

e :

External

g :

Global

gas:

Gasket

h :

Homogeneous

i :

Internal

iso:

Isentropic

l :

Liquid

mod:

Modified

v :

Vapour

vol:

Volumetric

r :

Refrigerant

t :

Tube

w :

Wall

References

  1. Guzella, M.S.; Cabezas-Gómez, L.: Numerical simulation of the performance of a household refrigerator during start-up and cycling operations. In: Proceedings of IV Journeys in Multiphase Flows (JEM 2017), paper 0047

  2. Bjork, E.; Palm, B.: Performance of a domestic refrigerator under influence of varied expansion device capacity, refrigerant charge and ambient temperature. Int. J. Refrig. 29, 789–798 (2006)

    Article  Google Scholar 

  3. Melo, C.; Ferreira, R.T.S.; Pereira, R.H.; Negrão, C.O.R.: Dynamic behavior of a vapour compression refrigerator: a theoretical and experimental analysis. In: Proceedings of International Refrigeration and Air Conditioning Conference at Purdue, paper 52 (1988)

  4. Lunardi, M.A.: Numerical simulation of the dynamic behavior of household refrigerators. MSc thesis, Federal University of Santa Catarina, Florianópolis-SC, Brazil (in Portuguese) (1991)

  5. Chen, Z.J.; Lin, W.H.: Dynamic simulation and optimal matching of a small-scale refrigeration system. Int. J. Ref. 14, 329–335 (1991)

    Article  Google Scholar 

  6. Yuan, X.; Chen, Y.; Xu, D.G.; Yian, L.X.: A computer simulation and experimental investigation of the working process of a domestic refrigerator, p. 1198–1202. IIR International Congress of Refrigeration, Montreal, Canada (1991)

    Google Scholar 

  7. Jansen, M.J.P.; de Wit, J.A.; Kuijpers, L.J.M.: Cycling losses in domestic appliances: an experimental and theoretical analysis. Int J Refrig 15(3), 152–158 (1992)

    Article  Google Scholar 

  8. Jakobsen, A.: Energy optimisation of refrigeration systems–the domestic refrigerator–a case of study. Ph. D Thesis, The Technical University of Denmark (DTU) (1995)

  9. Hermes, C.J.L.; Melo, C.: A first-principles simulation model for the start-up and cycling transients of household refrigerators. Int J Refrig 31, 1341–1357 (2008)

    Article  Google Scholar 

  10. Li, B.; Alleyne, A.G.: A dynamic model of a vapor compression cycle with shut-down and start-up operation. Int J Refrig 33, 538–552 (2010)

    Article  Google Scholar 

  11. Tulapurkar, C.; Kandelwal, R.: Transient lumped parameter modeling for vapour compression cycle based refrigerator. In: Proceedings of International Refrigeration and Air Conditioning Conference at Purdue, paper 1129 (2010)

  12. Lin, E.; Ding, G.; Zhao, D.; Liao, Y.; Yu, N.: Dynamics model for multi-compartment indirect cooling household refrigerator using Z-transfer function based cabinet model. Int J Therm Sci 50, 1308–1325 (2011)

    Article  Google Scholar 

  13. Tagliafico, L.A.; Scarpa, F.; Tagliafico, G.A.: A compact dynamic model for household vapor compression refrigerated systems. Appl. Therm. Eng. 35, 1–8 (2012)

    Article  Google Scholar 

  14. Borges, B.N.; Hermes, C.J.L.; Gonçalves, J.; Melo, C.: Transient simulation of household refrigerators: a semi-empirical quasi-steady approach. Appl. Energy. 88, 748–754 (2011)

    Article  Google Scholar 

  15. Borges, B.N.; Hermes, C.J.L.; Melo, C.: Transient simulation of a two-door frost-free refrigerator subjected to periodic door opening and evaporator frosting. Appl. Energy. 147, 386–395 (2015)

    Article  Google Scholar 

  16. Hermes, C.J.L.; Melo, C.; Negrão, C.O.R.: A numerical simulation model for plate-type, roll-bond evaporators. Int. J. Refrig. 31, 335–347 (2008)

    Article  Google Scholar 

  17. Guzella, M.S.; Cabezas-Gómez, L.; Silva, J.A.; Maia, C.B.; Hanriot, S.M.: Numerical modeling of the thermal–hydraulic behavior of wire-on-tube condensers operating with HFC-134a using homogeneous equilibrium model: evaluation of some void fraction correlations. Heat. Mass. Transf. 52, 183–195 (2016)

    Article  Google Scholar 

  18. Guzella, M.S.; Cabezas-Gómez, L.; Guimarães, L.G.M.; Tibiriçá, C.B.: A modified approach for numerical simulation of capillary tube-suction line heat exchangers. Appl. Energy. 102, 283–292 (2016)

    Article  Google Scholar 

  19. Hermes, C.J.L.; Melo, C.; Knabben, F.T.: Algebraic solution of capillary tube flow part II: capillary tube suction line heat exchangers. Appl. Energy. 30, 770–775 (2010)

    Article  Google Scholar 

  20. Gedik, E.; Kılıçaslan, E.; Acar, B.; Ergun, A.; Ozbas, E.: Experimental investigation of a household refrigerator performance using chimney-type condenser. Arab. J. Sci. Eng. 41, 1691–1697 (2016)

    Article  Google Scholar 

  21. Harun-Or-Rashid, M.; Jeong, J.H.: Replacement of present conventional condenser of household refrigerator by louver fin micro-channel condenser. Arab. J. Sci. Eng. 44, 753–761 (2019)

    Article  Google Scholar 

  22. Ahmadi, M.H.; Ahmadi, M.; Mehrpooya, M.; Hosseinzade, H.; Feidt, M.: Thermodynamic and thermo-economic analysis and optimization of performance of irreversible four-temperature-level absorption refrigeration. Energy. Convers. Manag. 88, 1051–1059 (2014)

    Article  Google Scholar 

  23. Ahmadi, M.H.; Ahmadi, M.A.: Multi objective optimization of performance of three-heat-source irreversible refrigerators based algorithm NSGAII. Renew. Sustain. Energy. Rev. 60, 784–794 (2016)

    Article  Google Scholar 

  24. Ghorbani, B.; Mehrpooya, M.; Shimohammadi, R.; Hamed, M.: A comprehensive approach toward utilizing mixed refrigerant and absorption refrigeration systems in an integrated cryogenic refrigeration process. J. Clean. Prod. 179, 495–514 (2018)

    Article  Google Scholar 

  25. Ghorbani, B.; Ebrahimi, A.; Skandarzadeh, F.; Ziabasharhagh, M.: Energy, exergy and pinch analyses of an integrated cryogenic natural gas process based on coupling of absorption–compression refrigeration system, organic Rankine cycle and solar parabolic trough collectors. J. Therm. 1–29 (2020)

  26. Mehrpooya, M.; Vatani, A.; Sadeghian, F.; Ahmadi, M.H.: A novel process configuration for hydrocarbon recovery process with autoerefrigeration system. J. Nat. Gas. Sci. Eng. 42, 262–270 (2017)

    Article  Google Scholar 

  27. Zhang, Z.; Wu, Q.B.; Li, L.P.; Kong, X.Q.: Effects of refrigerant charge and structural parameters on the performance of a direct-expansion solar-assisted heat pump system. Appl. Therm. Eng. 73, 522–528 (2014)

    Article  Google Scholar 

  28. He, Y.; Liang, X.; Cheng, J.; Shao, L.; Zhang, C.: Approaching optimum COP by refrigerant charge management in transcritical CO2 heat pump water heater. Int. J. Refrig. 118, 161–172 (2020)

    Article  Google Scholar 

  29. Wang, Y.; Ye, Z.; Song, Y.S.; Yin, X.; Cao, F.: Energy, exergy, economic and environmental analysis of refrigerant charge in air source transcritical carbon dioxide heat pump water heater. Energy. Convers. Manag. 223, 113209 (2020)

    Article  Google Scholar 

  30. Hermes C.J.L.: Development of mathematical models for numerical simulation of domestic refrigerators in transient operations. M.Sc Dissertation, Federal University of Santa Catarina (in Portuguese) (2000)

  31. GT-SUITE: Flow theory manual v7.3. Gamma Technologies Inc, Westmont (2012)

    Google Scholar 

  32. Serghides, T.K.: Estimate friction factor accurately. Chem. Eng. J. 91(5), 63–64 (1984)

    Google Scholar 

  33. Friedel, L.: Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow. In: European Two-Phase Flow Meeting, paper E2 (1979)

  34. Dittus, F.W.; Boelter, L.M.K.: Heat transfer in automobile radiators of the tubular type. Int. Commun. Heat. Mas. 12, 3–22 (1930)

    Article  MATH  Google Scholar 

  35. Dobson, M.K.; Chato, J.C.: Condensation in smooth horizontal tubes. ASME. J. Heat. Transf. 120, 193–213 (1998)

    Article  Google Scholar 

  36. Klimenko, V.V.: A generalized correlation for two-phase forced flow heat transfer. Int. J. Heat. Mass. Tran. 31, 541–552 (1988)

    Article  Google Scholar 

  37. Tanda, D.W.; Tagliafico, L.: Radiation and natural convection heat transfer from wire-and- tube heat exchangers in refrigeration appliances. Int. J. Refrig. 20(7), 461–469 (1997)

    Article  Google Scholar 

  38. Churchill, S.W.; Chu, H.H.S.: Correlation equation for laminar and turbulent free convection for a vertical plate. Int. J. Heat. Mass. Tran. 18, 1323–1329 (1975)

    Article  Google Scholar 

  39. Rice, C.K.: The effect of void fraction correlation and heat flux assumption on refrigerant charge inventory predictions. ASHRAE. Trans. 93, 341–367 (1987)

    Google Scholar 

Download references

Funding

This study was funded by the Brazilian National Council for Scientific and Technological—CNPq (processes 306675/2014–5 and 304972/2017–7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matheus dos Santos Guzella.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Guzella, M., Cabezas-Gómez, L. & Guimarães, L.G.M. Numerical Simulation of a Single-compartment Household Refrigerator During Start-up Transient and Stationary Cyclic Operation with Different Refrigerant Charges. Arab J Sci Eng 46, 7533–7542 (2021). https://doi.org/10.1007/s13369-021-05490-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05490-1

Keywords

Navigation