Skip to main content
Log in

Quantitative stability for hypersurfaces with almost constant curvature in space forms

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

The Alexandrov Soap Bubble Theorem asserts that the distance spheres are the only embedded closed connected hypersurfaces in space forms having constant mean curvature. The theorem can be extended to more general functions of the principal curvatures \(f(k_1,\ldots ,k_{n-1})\) satisfying suitable conditions. In this paper, we give sharp quantitative estimates of proximity to a single sphere for Alexandrov Soap Bubble Theorem in space forms when the curvature operator f is close to a constant. Under an assumption that prevents bubbling, the proximity to a single sphere is optimally quantified in terms of the oscillation of the curvature function f. Our approach provides a unified picture of quantitative studies of the method of moving planes in space forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abresch, U., Rosenberg, H.: A Hopf differential for constant mean curvature surfaces in \(\mathbb{S}^2\times \mathbb{R}\) and \(\mathbb{H}^2\times \mathbb{R}\). Acta Math. 193(2), 141–174 (2004)

    Article  MathSciNet  Google Scholar 

  2. Alexandrov, A.D.: Uniqueness theorems for surfaces in the large II. Vestnik Leningrad Univ. 12(7), 15–44 (1957). (English translation: Amer. Math. Soc. Translations, Ser. 2, 21 (1962), 354–388.)

  3. Alexandrov, A.D.: Uniqueness theorems for surfaces in the large V. Vestnik Leningrad Univ. 13(19), 5–8 (1958). (English translation: Amer. Math. Soc. Translations, Ser. 2, 21 (1962), 412–415.)

  4. Alexandrov, A.D.: A characteristic property of spheres. Ann. Mat. Pura Appl. 58, 303–315 (1962)

    Article  MathSciNet  Google Scholar 

  5. Barbosa, J.L., M do Carmo, : Stability of hypersurfaces of constant mean curvature. Math. Zeit. 185(3), 339–353 (1984)

    Article  MathSciNet  Google Scholar 

  6. Barbosa, J.L., M. do Carmo, M. Eschenburg, : Stability of Hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Zeit. 197(1), 123–138 (1988)

    Article  MathSciNet  Google Scholar 

  7. Berestycki, H., Caffarelli, L.A., Nirenberg, L.: Inequalities for second-order elliptic equations with applications to unbounded domains I. Duke Math. J. 81(2), 467–494 (1996)

    Article  MathSciNet  Google Scholar 

  8. Bianchini, C., Ciraolo, G., Salani, P.: An overdetermined problem for the anisotropic capacity. Calc. Var. Partial Differ. Equ. 55(4), 55–84 (2016)

    Article  MathSciNet  Google Scholar 

  9. Brendle, S.: Constant mean curvature surfaces in warped product manifolds. Publ. Math. Inst. Hautes Études Sci. 117, 247–269 (2013)

    Article  MathSciNet  Google Scholar 

  10. Cabré, X., Fall, M., Sola-Morales, J., Weth, T.: Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay. J. Reine Angew. Math. (Crelle’s Journal) arXiv:1503.00469

  11. Cheng, S., Yau, S.: Hypersurfaces with constant scalar curvature. Math. Ann. 225(3), 195–204 (1977)

    Article  MathSciNet  Google Scholar 

  12. Ciraolo, G., Figalli, A., Maggi, F., Novaga, M.: Rigidity and sharp stability estimates for hypersurfaces with constant and almost-constant nonlocal mean curvature. J. Reine Angew. Math. (Crelle’s J.) 741, 275–294 (2018)

    Article  MathSciNet  Google Scholar 

  13. Ciraolo, G., Maggi, F.: On the shape of compact hypersurfaces with almost constant mean curvature. Commun. Pure Appl. Math. 70, 665–716 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ciraolo, G., Vezzoni, L.: A sharp quantitative version of Alexandrov’s theorem via the method of moving planes. J. Eur. Math. Soc. (JEMS) 20(2), 261–299 (2018)

    Article  MathSciNet  Google Scholar 

  15. Ciraolo, G., Vezzoni, L.: Quantitative stability for Hypersurfaces with almost constant mean curvature in the Hyperbolic space. Indiana Univ. Math. J. arXiv:1611.02095 (to appear)

  16. Delaunay, C.: Sur la surface de révolution dont la courbure moyenne est constante. J. Math. Pures. Appl. 6, 309–320 (1841)

    Google Scholar 

  17. Delgadino, M., Maggi, F.: Alexandrov’s Theorem revisited. arXiv:1711.07690v2 (preprint)

  18. Delgadino, M., Maggi, F., Mihaila, C., Neumayer, R.: Bubbling with \(L^2\)-almost constant mean curvature and an Alexandrov-type theorem for crystals. Arch. Ration. Mech. Anal. 230(3), 1131–1177 (2018)

    Article  MathSciNet  Google Scholar 

  19. Feldman, W.M.: Stability of Serrin’s problem and dynamic stability of a model for contact angle motion. SIAM J. Math. Anal. 50(3), 3303–3326 (2018)

    Article  MathSciNet  Google Scholar 

  20. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1977)

    Book  Google Scholar 

  21. Hartman, P.: On complete hypersurfaces of non negative sectional curvatures and constant \(m\)’th mean curvature. Trans. Am. Math. Soc. 245, 363–374 (1978)

    MATH  Google Scholar 

  22. He, Y.J., Li, H.Z.: Integral formula of Minkowski type and new characterization of the Wulff shape. Acta Math. Sin. 24(4), 697–704 (2008)

    Article  MathSciNet  Google Scholar 

  23. He, Y., Li, H., Ma, H., Ge, J.: Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures. Indiana Univ. Math. J. 58(2), 853–868 (2009)

    Article  MathSciNet  Google Scholar 

  24. Hopf, H.: Differential Geometry in the Large. Lecture Notes in Mathematics, vol. 1000 (1989)

  25. Hsiang, W.Y., Teng, Z.-H., Yu, W.C.: New examples of constant mean curvature immersions of \((2k-1)\)-spheres into Euclidean \(2k\)-space. Ann. Math. (2) 117(3), 609–625 (1983)

    Article  MathSciNet  Google Scholar 

  26. Hsiang, W.Y., Yu, W.: A generalization of a Theorem of Delaunay. J. Differ. Geom. 16, 161–177 (1981)

    Article  MathSciNet  Google Scholar 

  27. Hsiung, C.C.: Some integral formulas for closed hypersurfaces. Math. Scand. 2, 286–294 (1954)

    Article  MathSciNet  Google Scholar 

  28. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)

    Article  MathSciNet  Google Scholar 

  29. Korevaar, N.J.: Sphere theorems via Alexandrov for constant Weingarten curvature hypersurfaces—Appendix to a note of A. Ros. J. Differ. Geom. 27, 221–223 (1988)

    MATH  Google Scholar 

  30. Krummel, B., Maggi, F.: Isoperimetry with upper mean curvature bounds and sharp stability estimates. Calc. Var. Partial Differ. Equ. 56(2), 53 (2017)

    Article  MathSciNet  Google Scholar 

  31. Liebmann, H., Eine neue Eigenschaft der Kugel. Nachr. Kgl. Ges. Wiss. Göttingen, Math-Phys. Klasse 44–55 (1899)

  32. Magnanini, R.: Alexandrov, Serrin, Weinberger, Reilly: symmetry and stability by integral identities. In: Bruno Pini Mathematical Seminar, pp. 121–141 (2017)

  33. Magnanini, R., Poggesi G.: On the stability for Alexandrov’s Soap Bubble Theorem. J. Anal. Math. arXiv:1610.07036 (to appear)

  34. Magnanini, R., Poggesi, G.: Serrin’s problem and Alexandrov’s Soap Bubble Theorem: stability via integral identities. Indiana Univ. Math. J. arXiv:1708.07392 (to appear)

  35. Meeks III, W.H., Mira, P., Pérez, J., Ros, A., Constant mean curvature spheres in homogeneous three-manifolds. arXiv:1706.09394 (preprint)

  36. Meeks III,W.H., Mira, P., Pérez, J., Ros, A.: Constant mean curvature spheres in homogeneous three-spheres. arXiv:1308.2612 (preprint)

  37. Montiel, S., Ros, A.: Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. Pitman Monogr. Surv. Pure Appl. Math. 52, 279–296 (1991)

    MathSciNet  MATH  Google Scholar 

  38. Qiu, G., Xia, C.: A generalization of Reilly’s formula and its applications to a new Heintze-Karcher type inequality. Int. Math. Res. Not. IMRN 17, 7608–7619 (2015)

    Article  MathSciNet  Google Scholar 

  39. Reilly, R.: Applications of the Hessian operator in a Riemannian manifold. Indiana Univ. Math. J. 26, 459–472 (1977)

    Article  MathSciNet  Google Scholar 

  40. Ros, A.: Compact hypersurfaces with constant higher order mean curvatures. Rev. Math. Iber. 3, 447–453 (1987)

    Article  MathSciNet  Google Scholar 

  41. Ros, A.: Compact hypersurfaces with constant scalar curvature and a congruence theorem. J. Differ. Geom. 27, 215–220 (1988)

    Article  MathSciNet  Google Scholar 

  42. Rosenberg, H.: Hypersurfaces of constant curvature in space forms. Bull. Sci. Math. 117(2), 211–239 (1993)

    MathSciNet  MATH  Google Scholar 

  43. Süss, W.: Uber Kennzeichnungen der Kugeln und Affinsphären durch Herrn K.-P. Grotemeyer. Arch. Math. (Basel) 3, 311–313 (1952)

    Article  MathSciNet  Google Scholar 

  44. Wente, H.C.: Counterexample to a conjecture of H. Hopf. Pac. J. Math. 121, 193–243 (1986)

    Article  MathSciNet  Google Scholar 

  45. Yau, S.T.: Problem Section. Seminar on Differential Geometry. Ann. of Math. Stud., no. 102, pp. 669–706. Princeton Univ Press, Princeton (1982)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Harold Rosenberg for suggesting the problem studied in this paper. The paper was completed, while the second author was visiting the Department of Mathematics of the ETH in Zürich, and he wishes to thank the institute for hospitality and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Roncoroni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first two authors have been supported by GNAMPA of INdAM. The third author has been supported by GNSAGA of INdAM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciraolo, G., Roncoroni, A. & Vezzoni, L. Quantitative stability for hypersurfaces with almost constant curvature in space forms. Annali di Matematica 200, 2043–2083 (2021). https://doi.org/10.1007/s10231-021-01069-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-021-01069-7

Keywords

Mathematics Subject Classification

Navigation