Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Novel Hybrid Molecules Based on triazole-β-lactam as Potential Biological Agents

Author(s): Pezhman Shiri*

Volume 21, Issue 5, 2021

Published on: 27 October, 2020

Page: [536 - 553] Pages: 18

DOI: 10.2174/1389557520666201027160436

Price: $65

Abstract

Triazole ring is a cyclic scaffold containing three heteroatoms of nitrogen. They display a broad variety of biological activities. The uncatalyzed/catalyzed 1,3-dipolar cycloadditions are a chemical reaction between a 1,3-dipole and a dipolarophile to achieve 1,2,3-triazoles.

The hybrid approach is an innovative and powerful synthetic tool for the synthesis of two or more distinct entities in one molecule with novel biological activities. Owing to the high potential of β-lactams to display noticeable biological properties, these compounds have been one of the important ingredients in hybrid molecules. The four-membered lactams have been recognized as a part of penicillin. There are various synthetic protocols for the synthesis of β-lactams. Staudinger reaction of the Schiff bases with diphenylketenes is a successful and famous strategy for the synthesis of these products.

Even though, the number of heterocyclic compounds is limited, plenty of hybrids based on heterocyclic compounds can be designed and prepared. The synthesis of hybrid products of triazole-β-lactam has proved to be highly challenging. The current review article outlines the diversity and creativity in the elegant synthesis of triazole-β-lactam hybrids as potential biological agents. Molecules including isatin, ferrocene, bile acid, chalcone, and etc were attached to β-lactam with triazole linker, as well.

Keywords: Triazole, β-Lactam, molecule hybrids, biological agents, Triazole-β-lactam hybrids, triazole linked β-lactamanother molecule.

Graphical Abstract
[1]
Shaveta, M.; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039] [PMID: 27598238]
[2]
Pozharskii, A.F.; Soldatenkov, A.T.; Katritzky, A.R. Heterocycles in life and society: An introduction to heterocyclic chemistry, biochemistry and applications, 2nd ed; John Wiley & Sons, 2011.
[http://dx.doi.org/10.1002/9781119998372]
[3]
Li, J.J. Heterocyclic chemistry in drug discovery; John Wiley & Sons, 2013.
[4]
Sharghi, H.; Aberi, M.; Shiri, P. Silica‐supported Cu (II)-quinoline complex: Efficient and recyclable nanocatalyst for one-pot synthesis of benzimidazolquinoline derivatives and 2H-indazoles. Appl. Organomet. Chem., 2019, 33e4974
[http://dx.doi.org/10.1002/aoc.4974]
[5]
Sharghi, H.; Shiri, P.; Aberi, M. An overview on recent advances in the synthesis of sulfonated organic materials, sulfonated silica materials, and sulfonated carbon materials and their catalytic applications in chemical processes. Beilstein J. Org. Chem., 2018, 14, 2745-2770.
[http://dx.doi.org/10.3762/bjoc.14.253] [PMID: 30498525]
[6]
Sharghi, H.; Shiri, P.; Aberi, M. A solvent-free and one-pot strategy for ecocompatible synthesis of substituted benzofurans from various salicylaldehydes, secondary amines, and nonactivated alkynes catalyzed by copper (I) oxide nanoparticles. Synthesis, 2014, 46, 2489-2498.
[http://dx.doi.org/10.1055/s-0034-1378206]
[7]
Sharghi, H.; Aberi, M.; Khataminejad, M.; Shiri, P. Solvent-free and room temperature synthesis of 3-arylquinolines from different anilines and styrene oxide in the presence of Al2O3/MeSO3H. Beilstein J. Org. Chem., 2017, 13, 1977-1981.
[http://dx.doi.org/10.3762/bjoc.13.193] [PMID: 29062417]
[8]
Akkurt, M.; Jarrahpour, A.; Chermahini, M.M.; Shiri, P.; Büyükgüngör, O. 2-[(E)-(Morpholin-4-ylimino)methyl]-6-(morpholin-4-ylmethyl)phenol. Acta Cryst., 2013, E69, o1576.
[9]
Akkurt, M.; Jarrahpour, A.; Chermahini, M.M.; Shiri, P.; Tahir, M.N. 4-(1-Methylethyl)-N-((E)-4-[1-(prop-2-en-1-yl)-1H-1,2,3-triazol-4-yl]methoxybenzylidene)aniline. Acta Cryst., 2013, E69, o247.
[10]
Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem., 2019, 180, 486-508.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.043] [PMID: 31330449]
[11]
Borazjani, N.; Sepehri, S.; Behzadi, M.; Jarrahpour, A.; Rad, J.A.; Sasanipour, M.; Mohkam, M.; Ghasemi, Y.; Akbarizadeh, A.R.; Digiorgio, C.; Brunel, J.M.; Ghanbari, M.M.; Batta, G.; Turos, E. Three-component synthesis of chromeno β-lactam hybrids for inflammation and cancer screening. Eur. J. Med. Chem., 2019, 179, 389-403.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.036] [PMID: 31260892]
[12]
Wang, Q.; Hu, J.; Zheng, N. A photocatalyzed cascade approach toward the tetracyclic core of akuammiline alkaloids. Org. Lett., 2019, 21(3), 614-617.
[http://dx.doi.org/10.1021/acs.orglett.8b03648] [PMID: 30638388]
[13]
Akkurt, M.; Jarrahpour, A.; Chermahini, M.M.; Shiri, P.; Özdemir, N. (E)-N-(4-[1-(Prop-2-en-1-yl)-1H-1,2,3-triazol-4-yl]methoxy benzylidene)morpholin-4-amine. Acta Cryst., 2014, E70, o289-o290.
[14]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183111700
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[15]
Chu, X.M.; Wang, C.; Wang, W.L.; Liang, L.L.; Liu, W.; Gong, K.K.; Sun, K.L. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2019, 166, 206-223.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.047] [PMID: 30711831]
[16]
Yan, S.J.; Liu, Y.J.; Chen, Y.L.; Liu, L.; Lin, J. An efficient one-pot synthesis of heterocycle-fused 1,2,3-triazole derivatives as anti-cancer agents. Bioorg. Med. Chem. Lett., 2010, 20(17), 5225-5228.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.141] [PMID: 20655212]
[17]
Gao, F.; Wang, T.; Xiao, J.; Huang, G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2019, 173, 274-281.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.043] [PMID: 31009913]
[18]
Lazrek, H.B.; Taourirte, M.; Oulih, T.; Barascut, J.L.; Imbach, J.L.; Pannecouque, C.; Witrouw, M.; De Clercq, E. Synthesis and anti-HIV activity of new modified 1,2,3-triazole acyclonucleosides. Nucleosides Nucleotides Nucleic Acids, 2001, 20(12), 1949-1960.
[http://dx.doi.org/10.1081/NCN-100108325] [PMID: 11794800]
[19]
Meng, X.X.; Kang, Q.Q.; Zhang, J.Y.; Li, Q.; Wei, W.T.; He, W.M. Visible-light-initiated regioselective sulfonylation/cyclization of 1,6-enynes under photocatalyst- and additive-free conditions. Green Chem., 2020, 22, 1388-1392.
[http://dx.doi.org/10.1039/C9GC03769A]
[20]
Huang, X.J.; Qin, F.H.; Liu, Y.; Wu, S.P.; Li, Q.; Wei, W.T. Acylation/cyclization of 1,6-dienes with ethers under catalyst- and base-free conditions. Green Chem., 2020, 22, 3952-3955.
[http://dx.doi.org/10.1039/D0GC00865F]
[21]
Meng, Y.N.; Kang, Q.Q.; Cao, T.T.; Song, S.Z.; Ge, G.P.; Li, Q.; Wei, W.T. Oxone-mediated radical bicyclization of 1,6-enynes through dual α-C(sp3)–H functionalization of ketones under catalyst- and base-free conditions. ACS Sustain. Chem. Eng., 2019, 7, 18738-18743.
[http://dx.doi.org/10.1021/acssuschemeng.9b05978]
[22]
Xu, X.D.; Cao, T.T.; Meng, Y.N.; Zhou, G.; Guo, Z.; Li, Q.; Wei, W.T. Metal-free regioselective radical cyclization of 1,6-enynes with carbonyl compounds. ACS Sustain. Chem. Eng., 2019, 7, 13491-13496.
[http://dx.doi.org/10.1021/acssuschemeng.9b03118]
[23]
Saldívar-González, F.I.; Lenci, E.; Trabocchi, A.; Medina-Franco, J.L. Exploring the chemical space and the bioactivity profile of lactams: A chemoinformatic study. RSC Adv., 2019, 9, 27105-27116.
[http://dx.doi.org/10.1039/C9RA04841C]
[24]
Guijarro, D.; Pablo, Ó.; Yus, M. Synthesis of γ-, δ-, and ε-lactams by asymmetric transfer hydrogenation of N-(tert-butylsulfinyl)iminoesters. J. Org. Chem., 2013, 78(8), 3647-3654.
[http://dx.doi.org/10.1021/jo400164y] [PMID: 23535067]
[25]
Ghabraie, E.; Balalaie, S.; Mehrparvar, S.; Rominger, F. Synthesis of functionalized β-lactams and pyrrolidine-2,5-diones through a metal-free sequential Ugi-4CR/cyclization reaction. J. Org. Chem., 2014, 79(17), 7926-7934.
[http://dx.doi.org/10.1021/jo5010422] [PMID: 25105212]
[26]
Arefi, H.; Naderi, N.; Shemirani, A.B.I.; Kiani Falavarjani, M.; Azami Movahed, M.; Zarghi, A. Design, synthesis, and biological evaluation of new 1,4-diarylazetidin-2-one derivatives (β-lactams) as selective cyclooxygenase-2 inhibitors. Arch. Pharm. (Weinheim), 2020, 353(3)e1900293
[http://dx.doi.org/10.1002/ardp.201900293] [PMID: 31917485]
[27]
Mohamadzadeh, M.; Zarei, M.; Vessal, M. Synthesis, in vitro biological evaluation and in silico molecular docking studies of novel β-lactam-anthraquinone hybrids. Bioorg. Chem., 2020, 95103515
[http://dx.doi.org/10.1016/j.bioorg.2019.103515] [PMID: 31884134]
[28]
Zarei, M. One-pot synthesis of 1,3,4-thiadiazoles using Vilsmeier reagent as a versatile cyclodehydration agent. Tetrahedron, 2017, 73, 1867-1872.
[http://dx.doi.org/10.1016/j.tet.2017.02.042]
[29]
Moslehia, A.; Zarei, M. Application of magnetic Fe3O4 nanoparticles as a reusable heterogeneous catalyst in the synthesis of β-lactams containing amino groups. New J. Chem., 2019, 43, 12690-12697.
[http://dx.doi.org/10.1039/C9NJ02759A]
[30]
Hosseini, A.; Schreiner, P.R. Synthesis of exclusively 4-substituted β-Lactams through the Kinugasa reaction utilizing calcium carbide. Org. Lett., 2019, 21(10), 3746-3749.
[http://dx.doi.org/10.1021/acs.orglett.9b01192] [PMID: 31059273]
[31]
Moya, B.; Barcelo, I.M.; Cabot, G.; Torrens, G.; Palwe, S.; Joshi, P.; Umarkar, K.; Takalkar, S.; Periasamy, H.; Bhagwat, S.; Patel, M.; Bou, G.; Oliver, A. In vitro and in vivo Activities of β-lactams in combination with the novel β-lactam enhancers zidebactam and wck 5153 against multidrug-resistant metallo-β-lactamase-producing klebsiella pneumoniae. Antimicrob. Agents Chemother., 2019, 63(5), e00128-e00119.
[http://dx.doi.org/10.1128/AAC.00128-19] [PMID: 30782985]
[32]
Rad, J.A.; Jarrahpour, A.; Aseman, M.D.; Nabavizadeh, M.; Pournejati, R.; Karbalaei-Heidari, H.R.; Turos, E. Design, synthesis, DNA binding, cytotoxicity, and molecular docking studies of amonafide-linked β-lactam. Chem. Select, 2019, 4, 2741-2746.
[http://dx.doi.org/10.1002/slct.201803785]
[33]
Rad, J.A.; Jarrahpour, A.; Ersanlı, C.C.; Atioğlu, Z.; Akkurt, M.; Turos, E. Synthesis of some novel indeno [1, 2-b] quinoxalin spiro-β-lactam conjugates. Tetrahedron, 2017, 73, 1135-1142.
[http://dx.doi.org/10.1016/j.tet.2017.01.009]
[34]
Magriotis, P.A. Recent progress in the enantioselective synthesis of β-lactams: Development of the first catalytic approaches. Angew. Chem. Int. Ed. Engl., 2001, 40(23), 4377-4379.
[http://dx.doi.org/10.1002/1521-3773(20011203)40:23<4377:AID-ANIE4377>3.0.CO;2-J] [PMID: 12404420]
[35]
Gao, F.; Xiao, J.; Huang, G. Current scenario of tetrazole hybrids for antibacterial activity. Eur. J. Med. Chem., 2019, 184111744
[http://dx.doi.org/10.1016/j.ejmech.2019.111744] [PMID: 31605865]
[36]
Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A.M. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[37]
Zhang, L.; Xu, Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem., 2019, 181111587
[http://dx.doi.org/10.1016/j.ejmech.2019.111587] [PMID: 31404864]
[38]
Baartzes, N.; Stringer, T.; Seldon, R.; Warner, D.F.; Taylor, D.; Wittlin, S.; Chibale, K.; Smith, G.S. Bioisosteric ferrocenyl aminoquinoline-benzimidazole hybrids: Antimicrobial evaluation and mechanistic insights. Eur. J. Med. Chem., 2019, 180, 121-133.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.069] [PMID: 31301563]
[39]
Divse, J.M.; Mhaske, S.B.; Charolkar, C.R.; Sant, D.G.; Tupe, S.G.; Deshpande, M.V.; Khedkar, V.M.; Nawale, L.U.; Sarkar, D.; Pore, V.S. Synthesis and biological evaluation of new fluconazole β-lactam conjugates linked via 1,2,3-triazole. New J. Chem., 2017, 41, 470-479.
[http://dx.doi.org/10.1039/C6NJ03117J]
[40]
Jarrahpour, A.; Shirvani, P.; Sinou, V.; Latour, C.; Brunel, J.M. Synthesis and biological evaluation of some new β-lactam-triazole hybrids. Med. Chem. Res., 2016, 25, 149-162.
[http://dx.doi.org/10.1007/s00044-015-1474-x]
[41]
Garrido, M.; Corredor, M.; Orzáez, M.; Alfonso, I.; Messeguer, A. Regioselective synthesis of a family of β‐lactams bearing a triazole moiety as potential apoptosis inhibitors. Chem. Open, 2016, 5(5), 485-494.
[http://dx.doi.org/10.1002/open.201600052] [PMID: 27777842]
[42]
Ruivo, E.F.; Gonçalves, L.M.; Carvalho, L.A.; Guedes, R.C.; Hofbauer, S.; Brito, J.A.; Archer, M.; Moreira, R.; Lucas, S.D. Clickable 4‐oxo‐β‐lactam‐based selective probing for human neutrophil elastase related proteomes. ChemMedChem, 2016, 11(18), 2037-2042.
[http://dx.doi.org/10.1002/cmdc.201600258] [PMID: 27465595]
[43]
Alcaide, B.; Almendros, P.; Aragoncillo, C.; Callejo, R.; Ruiz, M.P.; Torres, M.R. Regio- and diastereoselective synthesis of β-lactam-triazole hybrids via Passerini/CuAAC sequence. J. Org. Chem., 2012, 77(16), 6917-6928.
[http://dx.doi.org/10.1021/jo301113g] [PMID: 22812653]
[44]
Raj, R.; Sharma, V.; Hopper, M.J.; Patel, N.; Hall, D.; Wrischnik, L.A.; Land, K.M.; Kumar, V. Synthesis and preliminary in vitro activity of mono- and bis-1H-1,2,3-triazole-tethered β-lactam-isatin conjugates against the human protozoal pathogen Trichomonas vaginalis. Med. Chem. Res., 2014, 23(8), 3671-3680.
[http://dx.doi.org/10.1007/s00044-014-0956-6] [PMID: 32214766]
[45]
Raj, R.; Singh, P.; Haberkern, N.T.; Faucher, R.M.; Patel, N.; Land, K.M.; Kumar, V. Synthesis of 1H-β-lactameisatin bi-functional hybrids and preliminary analysis of in vitro activity against the protozoal parasite Trichomonas vaginalis. Eur. J. Med. Chem., 2013, 63, 897-906.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.019] [PMID: 23631874]
[46]
Singh, P.; Raj, R.; Kumar, V.; Mahajan, M.P.; Bedi, P.M.; Kaur, T.; Saxena, A.K. 1,2,3-Triazole tethered β-lactam-chalcone bifunctional hybrids: Synthesis and anticancer evaluation. Eur. J. Med. Chem., 2012, 47(1), 594-600.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.033] [PMID: 22071256]
[47]
Kumar, K.; Singh, P.; Kremer, L.; Guérardel, Y.; Biot, C.; Kumar, V. Synthesis and in vitro anti-tubercular evaluation of 1,2,3-triazole tethered β-lactam-ferrocene and β-lactam-ferrocenylchalcone chimeric scaffolds. Dalton Trans., 2012, 41(19), 5778-5781.
[http://dx.doi.org/10.1039/c2dt30514c] [PMID: 22473422]
[48]
Kumar, K.; Carrère-Kremer, S.; Kremer, L.; Guérardel, Y.; Biot, C.; Kumar, V. Azide-alkyne cycloaddition en route towards 1H-1,2,3-triazole-tethered β-lactam-ferrocene and β-lactam-ferrocenylchalcone conjugates: Synthesis and in vitro anti-tubercular evaluation. Dalton Trans., 2013, 42(5), 1492-1500.
[http://dx.doi.org/10.1039/C2DT32148C] [PMID: 23108229]
[49]
Vatmurge, N.S.; Hazra, B.G.; Pore, V.S.; Shirazi, F.; Deshpande, M.V.; Kadreppa, S.; Chattopadhyay, S.; Gonnade, R.G. Synthesis and biological evaluation of bile acid dimers linked with 1,2,3-triazole and bis-β-lactam. Org. Biomol. Chem., 2008, 6(20), 3823-3830.
[http://dx.doi.org/10.1039/b809221d] [PMID: 18843413]
[50]
Vatmurge, N.S.; Hazra, B.G.; Pore, V.S.; Shirazi, F.; Chavan, P.S.; Deshpande, M.V. Synthesis and antimicrobial activity of β-lactam-bile acid conjugates linked via triazole. Bioorg. Med. Chem. Lett., 2008, 18(6), 2043-2047.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.102] [PMID: 18267360]
[51]
Jarrahpour, A.; Aye, M.; Ameri Rad, J.; Yousefinejad, S.; Sinou, V.; Latour, C.; Michel Brunel, J.; Turos, E. Design, synthesis, activity evaluation and QSAR studies of novel antimalarial 1,2,3-triazolo-β-lactam derivatives. J. Iran. Chem. Soc., 2018, 15, 1311-1326.
[http://dx.doi.org/10.1007/s13738-018-1330-2]
[52]
Dhawan, S.; Awolade, P.; Kisten, P.; Cele, N.; Pillay, A.S.; Saha, S.; Kaur, M.; Jonnalagadda, S.B.; Singh, P. Synthesis, cytotoxicity and antimicrobial evaluation of new coumarin-tagged β-lactam triazole hybrid. Chem. Biodivers., 2020, 17(1)e1900462
[http://dx.doi.org/10.1002/cbdv.201900462] [PMID: 31788939]
[53]
Khan, T.; Yadav, R.; Gound, S.S. An efficient synthesis and antibacterial activity of some novel 2-azetidinone derivatives of 4H-1,2,4-triazoles under mild conditions. J. Heterocycl. Chem., 2018, 55, 1042-1047.
[http://dx.doi.org/10.1002/jhet.3136]
[54]
Somani, R.; Shinde, C.; Kadam, V. Synthesis and antibacterial evaluation of some novel 4-thiazolidinone and 2-azetidinone derivatives. Indian Drugs, 2010, 47, 17-22.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy