Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in the genomics of ANCA-associated vasculitis—a view from East Asia

Abstract

Recent genome-wide association studies (GWAS) in populations of European ancestry have identified several susceptibility genes to anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). The most significant association was observed in HLA-DP variants in granulomatosis with polyangiitis and proteinase 3 (PR3)-ANCA positive vasculitis, while HLA-DQ variants were strongly associated with microscopic polyangiitis (MPA) and myeloperoxidase (MPO)-ANCA positive vasculitis (MPO-AAV). In non-HLA genes, SERPINA1, PRTN3 and PTPN22 were identified as susceptibility genes to AAV. The observations in GWAS suggested the presence of shared and non-shared susceptibility genes among AAV subsets. Epidemiological features of AAV are strikingly different in the East Asian populations; the proportions of MPO-AAV among total AAV, MPO-ANCA positive patients among GPA, and patients with interstitial lung disease among total AAV are considerably higher in Japan as compared with Europe. Such population differences suggest the critical role for genetic background behind these conditions. Although no GWAS has been reported in the Asian populations so far, the association of HLA-class II alleles with MPA and MPO-AAV was identified. Future genomics studies on AAV, especially from Asian populations, will provide valuable information to elucidate the molecular mechanisms and to identify molecular targets for AAV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Susceptibility genes/regions reported in genome-wide association studies on ANCA-associated vasculitis.
Fig. 2: HLA-class II variants associated with ANCA-associated vasculitis.

Similar content being viewed by others

References

  1. Watts R, Lane S, Hanslik T, Hauser T, Hellmich B, Koldingsnes W, et al. Development and validation of a consensus methodology for the classification of the ANCA-associated vasculitides and polyarteritis nodosa for epidemiological studies. Ann Rheum Dis. 2007;66:222–7.

    Article  PubMed  Google Scholar 

  2. Kitching AR, Anders HJ, Basu N, Brouwer E, Gordon J, Jayne DR, et al. ANCA-associated vasculitis. Nat Rev Dis Prim. 2020;6:71.

    Article  PubMed  Google Scholar 

  3. Sada KE, Harigai M, Amano K, Atsumi T, Fujimoto S, Yuzawa Y, et al. Comparison of severity classification in Japanese patients with antineutrophil cytoplasmic antibody-associated vasculitis in a nationwide, prospective, inception cohort study. Mod Rheumatol. 2016;26:730–7.

    Article  CAS  PubMed  Google Scholar 

  4. Chang DY, Li ZY, Chen M, Zhao MH. Myeloperoxidase-ANCA-positive granulomatosis with polyangiitis is a distinct subset of ANCA-associated vasculitis: a retrospective analysis of 455 patients from a single center in China. Semin Arthritis Rheum. 2019;48:701–6.

    Article  CAS  PubMed  Google Scholar 

  5. Fujimoto S, Watts RA, Kobayashi S, Suzuki K, Jayne DR, Scott DG. et al. Comparison of the epidemiology of anti-neutrophil cytoplasmic antibody-associated vasculitis between Japan and the U.K. Rheumatology (Oxford). 2011;50:1916–20.

    Article  Google Scholar 

  6. Gómez-Puerta JA, Gedmintas L, Costenbader KH. The association between silica exposure and development of ANCA-associated vasculitis: systematic review and meta-analysis. Autoimmun Rev. 2013;12:1129–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Scott J, Hartnett J, Mockler D, Little MA. Environmental risk factors associated with ANCA associated vasculitis: a systematic mapping review. Autoimmun Rev. 2020;19:102660.

    Article  CAS  PubMed  Google Scholar 

  8. Watts RA, Mahr A, Mohammad AJ, Gatenby P, Basu N, Flores-Suárez LF. Classification, epidemiology and clinical subgrouping of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Nephrol Dial Transpl. 2015;30:i14–22.

    Article  CAS  Google Scholar 

  9. Berti A, Cornec D, Crowson CS, Specks U, Matteson EL. The epidemiology of antineutrophil cytoplasmic autoantibody-associated vasculitis in Olmsted County, Minnesota: a twenty-year US population-based study. Arthritis Rheumatol. 2017;69:2338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rahmattulla C, Mooyaart AL, van Hooven D, Schoones JW, Bruijn JA, Dekkers OM, et al. Genetic variants in ANCA-associated vasculitis: a meta-analysis. Ann Rheum Dis. 2016;75:1687–92.

    Article  PubMed  Google Scholar 

  11. Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DR, et al. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012;367:214–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xie G, Roshandel D, Sherva R, Monach PA, Lu EY, Kung T, et al. Association of granulomatosis with polyangiitis (Wegener’s) with HLA-DPB1*04 and SEMA6A gene variants: evidence from genome-wide analysis. Arthritis Rheum. 2013;65:2457–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Merkel PA, Xie G, Monach PA, Ji X, Ciavatta DJ, Byun J, et al. Identification of functional and expression polymorphisms associated with risk for antineutrophil cytoplasmic autoantibody-associated vasculitis. Arthritis Rheumatol. 2017;69:1054–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lyons PA, Peters JE, Alberici F, Liley J, Coulson RMR, Astle W, et al. Genome-wide association study of eosinophilic granulomatosis with polyangiitis reveals genomic loci stratified by ANCA status. Nat Commun. 2019;10:5120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wu Z, Wu Q, Xu J, Chen S, Sun F, Li P, et al. HLA-DPB1 variant rs3117242 is associated with anti-neutrophil cytoplasmic antibody-associated vasculitides in a Han Chinese population. Int J Rheum Dis. 2017;20:1009–15.

    Article  CAS  PubMed  Google Scholar 

  16. Díaz G, Amicosante M, Jaraquemada D, Butler RH, Guillén MV, Sánchez M, et al. Functional analysis of HLA-DP polymorphism: a crucial role for DPbeta residues 9, 11, 35, 55, 56, 69 and 84-87 in T cell allorecognition and peptide binding. Int Immunol. 2003;15:565–76.

    Article  PubMed  Google Scholar 

  17. Pendergraft WF III, Preston GA, Shah RR, Tropsha A, Carter CW Jr, Jennette JC, et al. Autoimmunity is triggered by cPR-3(105-201), a protein complementary to human autoantigen proteinase-3. Nat Med. 2004;10:72–9.

    Article  CAS  PubMed  Google Scholar 

  18. Yang J, Bautz DJ, Lionaki S, Hogan SL, Chin H, Tisch RM, et al. ANCA patients have T cells responsive to complementary PR-3 antigen. Kidney Int. 2008;74:1159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heckmann M, Holle JU, Arning L, Knaup S, Hellmich B, Nothnagel M, et al. The Wegener’s granulomatosis quantitative trait locus on chromosome 6p21.3 as characterised by tagSNP genotyping. Ann Rheum Dis. 2008;67:972–9.

    Article  CAS  PubMed  Google Scholar 

  20. Crystal RG, Brantly ML, Hubbard RC, Curiel DT, States DJ, Holmes MD. The alpha 1-antitrypsin gene and its mutations. Clin Conséq Strateg Ther Chest. 1989;95:196–208.

    CAS  Google Scholar 

  21. Esnault VL, Testa A, Audrain M, Rogé C, Hamidou M, Barrier JH, et al. Alpha 1-antitrypsin genetic polymorphism in ANCA-positive systemic vasculitis. Kidney Int. 1993;43:1329–32.

    Article  CAS  PubMed  Google Scholar 

  22. Mahr AD, Edberg JC, Stone JH, Hoffman GS, St Clair EW, Specks U, et al. Alpha1-antitrypsin deficiency-related alleles Z and S and the risk of Wegener’s granulomatosis. Arthritis Rheum. 2010;62:3760–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gencik M, Meller S, Borgmann S, Fricke H. Proteinase 3 gene polymorphisms and Wegener’s granulomatosis. Kidney Int. 2000;58:2473–7.

    Article  CAS  PubMed  Google Scholar 

  24. Cooley P, Taylor KH, Czika W, Seifer C, Taylor JF. Analysis of a biomarker for Wegener’s granulomatosis. Int J Immunogenet. 2005;32:237–43.

    Article  CAS  PubMed  Google Scholar 

  25. Abdgawad M, Hellmark T, Gunnarsson L, Westman KW, Segelmark M. Increased neutrophil membrane expression and plasma level of proteinase 3 in systemic vasculitis are not a consequence of the - 564 A/G promotor polymorphism. Clin Exp Immunol. 2006;145:63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, et al. Genomic atlas of the human plasma proteome. Nature 2018;558:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rhee I, Veillette A. Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat Immunol. 2012;13:439–47.

    Article  CAS  PubMed  Google Scholar 

  28. Stanford SM, Bottini N. PTPN22: the archetypal non-HLA autoimmunity gene. Nat Rev Rheumatol. 2014;10:602–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jagiello P, Aries P, Arning L, Wagenleiter SE, Csernok E, Hellmich B, et al. The PTPN22 620W allele is a risk factor for Wegener’s granulomatosis. Arthritis Rheum. 2005;52:4039–43.

    Article  CAS  PubMed  Google Scholar 

  30. Chung SA, Xie G, Roshandel D, Sherva R, Edberg JC, Kravitz M, et al. Meta-analysis of genetic polymorphisms in granulomatosis with polyangiitis (Wegener’s) reveals shared susceptibility loci with rheumatoid arthritis. Arthritis Rheum. 2012;64:3463–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vang T, Congia M, Macis MD, Musumeci L, Orrú V, Zavattari P, et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet. 2005;37:1317–9.

    Article  CAS  PubMed  Google Scholar 

  32. Habib T, Funk A, Rieck M, Brahmandam A, Dai X, Panigrahi AK, et al. Altered B cell homeostasis is associated with type I diabetes and carriers of the PTPN22 allelic variant. J Immunol. 2012;188:487–96.

    Article  CAS  PubMed  Google Scholar 

  33. Wieczorek S, Holle JU, Cohen Tervaert JW, Harper L, Moosig F, Gross WL, et al. The SEM6A6 locus is not associated with granulomatosis with polyangiitis or other forms of antineutrophil cytoplasmic antibody-associated vasculitides in Europeans: comment on the article by Xie et al. Arthritis Rheumatol. 2014;66:1400–1.

    Article  PubMed  Google Scholar 

  34. Raffray L, Guillevin L. Updates for the treatment of EGPA. Presse Med. 2020;49:104036.

    Article  PubMed  Google Scholar 

  35. Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Puthalakath H, et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 2002;415:922–6.

    Article  CAS  PubMed  Google Scholar 

  36. Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in health and disease. Oncotarget 2015;6:23058–134.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tsubata T. B-cell tolerance and autoimmunity. F1000Res. 2017;6:391.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Köntgen F, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999;286:1735–8.

    Article  CAS  PubMed  Google Scholar 

  39. Kotzin JJ, Spencer SP, McCright SJ, Kumar DBU, Collet MA, Mowel WK, et al. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 2016;537:239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3:673–80.

    Article  CAS  PubMed  Google Scholar 

  41. Corren J, Ziegler SF. TSLP: from allergy to cancer. Nat Immunol. 2019;20:1603–9.

    Article  CAS  PubMed  Google Scholar 

  42. Torgerson DG, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR, Graves PE, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat Genet. 2011;43:887–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hui CC, Yu A, Heroux D, Akhabir L, Sandford AJ, Neighbour H, et al. Thymic stromal lymphopoietin (TSLP) secretion from human nasal epithelium is a function of TSLP genotype. Mucosal Immunol. 2015;8:993–9.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997;89:587–96.

    Article  CAS  PubMed  Google Scholar 

  45. Pai SY, Truitt ML, Ho IC. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc Natl Acad Sci USA. 2004;101:1993–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Raychaudhuri S, Remmers EF, Lee AT, Hackett R, Guiducci C, Burtt NP, et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat Genet. 2008;40:1216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wieczorek S, Holle JU, Müller S, Fricke H, Gross WL, Epplen JT. A functionally relevant IRF5 haplotype is associated with reduced risk to Wegener’s granulomatosis. J Mol Med (Berl). 2010;88:413–21.

    Article  Google Scholar 

  48. Tsuchiya N, Kobayashi S, Kawasaki A, Kyogoku C, Arimura Y, Yoshida M, et al. Genetic background of Japanese patients with antineutrophil cytoplasmic antibody-associated vasculitis: association of HLA-DRB1*0901 with microscopic polyangiitis. J Rheumatol. 2003;30:1534–40.

    CAS  PubMed  Google Scholar 

  49. Tsuchiya N, Kobayashi S, Hashimoto H, Ozaki S, Tokunaga K. Association of HLA-DRB1*0901-DQB1*0303 haplotype with microscopic polyangiitis in Japanese. Genes Immun. 2006;7:81–4.

    Article  CAS  PubMed  Google Scholar 

  50. Kawasaki A, Hasebe N, Hidaka M, Hirano F, Sada KE, Kobayashi S, et al. Protective role of HLA-DRB1*13:02 against microscopic polyangiitis and MPO-ANCA-positive vasculitides in a Japanese population: a case-control study. PLoS One. 2016;11:e0154393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wang HY, Cui Z, Pei ZY, Fang SB, Chen SF, Zhu L, et al. Risk HLA class II alleles and amino acid residues in myeloperoxidase-ANCA-associated vasculitis. Kidney Int. 2019;96:1010–9.

    Article  CAS  PubMed  Google Scholar 

  52. Luo H, Chen M, Yang R, Xu PC, Zhao MH. The association of HLA-DRB1 alleles with antineutrophil cytoplasmic antibody-associated systemic vasculitis in Chinese patients. Hum Immunol. 2011;72:422–5.

    Article  CAS  PubMed  Google Scholar 

  53. Watts RA, MacGregor AJ, Mackie SL. HLA allele variation as a potential explanation for the geographical distribution of granulomatosis with polyangiitis. Rheumatology (Oxford). 2015;54:359–62.

    Article  CAS  Google Scholar 

  54. Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011;11:852–63.

    Article  CAS  PubMed  Google Scholar 

  55. Giscombe R, Wang X, Huang D, Lefvert AK. Coding sequence 1 and promoter single nucleotide polymorphisms in the CTLA-4 gene in Wegener’s granulomatosis. J Rheumatol. 2002;29:950–3.

    CAS  PubMed  Google Scholar 

  56. Slot MC, Sokolowska MG, Savelkouls KG, Janssen RG, Damoiseaux JG, Tervaert JW. Immunoregulatory gene polymorphisms are associated with ANCA-related vasculitis. Clin Immunol. 2008;128:39–45.

    Article  CAS  PubMed  Google Scholar 

  57. Kamesh L, Heward JM, Williams JM, Gough SC, Chavele KM, Salama A, et al. CT60 and +49 polymorphisms of CTLA 4 are associated with ANCA-positive small vessel vasculitis. Rheumatology 2009;48:1502–5.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Y, Huang D, Paris PL, Sauter CS, Prock KA, Hoffman GS. An analysis of CTLA-4 and proinflammatory cytokine genes in Wegener’s granulomatosis. Arthritis Rheum. 2004;50:2645–50.

    Article  CAS  PubMed  Google Scholar 

  59. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423:506–11.

    Article  CAS  PubMed  Google Scholar 

  60. Cooper JD, Smyth DJ, Smiles AM, Plagnol V, Walker NM, Allen JE, et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet. 2008;40:1399–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Daha NA, Kurreeman FA, Marques RB, Stoeken-Rijsbergen G, Verduijn W, Huizinga TW, et al. Confirmation of STAT4, IL2/IL21, and CTLA4 polymorphisms in rheumatoid arthritis. Arthritis Rheum. 2009;60:1255–60.

    Article  PubMed  Google Scholar 

  62. Wieczorek S, Hoffjan S, Chan A, Rey L, Harper L, Fricke H, et al. Novel association of the CD226 (DNAM-1) Gly307Ser polymorphism in Wegener’s granulomatosis and confirmation for multiple sclerosis in German patients. Genes Immun. 2009;10:591–5.

    Article  CAS  PubMed  Google Scholar 

  63. Bártfai Z, Gaede KI, Russell KA, Muraközy G, Müller-Quernheim J, Specks U. Different gender-associated genotype risks of Wegener’s granulomatosis and microscopic polyangiitis. Clin Immunol. 2003;109:330–7.

    Article  PubMed  CAS  Google Scholar 

  64. Zhou Y, Giscombe R, Huang D, Lefvert AK. Novel genetic association of Wegener’s granulomatosis with the interleukin 10 gene. J Rheumatol. 2002;29:317–20.

    CAS  PubMed  Google Scholar 

  65. Wieczorek S, Hellmich B, Arning L, Moosig F, Lamprecht P, Gross WL, et al. Functionally relevant variations of the interleukin-10 gene associated with antineutrophil cytoplasmic antibody-negative Churg-Strauss syndrome, but not with Wegener’s granulomatosis. Arthritis Rheum. 2008;58:1839–48.

    Article  CAS  PubMed  Google Scholar 

  66. Carr EJ, Clatworthy MR, Lowe CE, Todd JA, Wong A, Vyse TJ, et al. Contrasting genetic association of IL2RA with SLE and ANCA-associated vasculitis. BMC Med Genet. 2009;10:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wieczorek S, Holle JU, Bremer JP, Wibisono D, Moosig F, Fricke H, et al. Contrasting association of a non-synonymous leptin receptor gene polymorphism with Wegener’s granulomatosis and Churg-Strauss syndrome. Rheumatology. 2010;49:907–14.

    Article  CAS  PubMed  Google Scholar 

  68. Kawasaki A, Inoue N, Ajimi C, Sada KE, Kobayashi S, Yamada H, et al. Association of IRF5 polymorphism with MPO-ANCA-positive vasculitis in a Japanese population. Genes Immun. 2013;14:527–9.

    Article  CAS  PubMed  Google Scholar 

  69. Wu Z, Xu J, Sun F, Chen H, Wu Q, Zheng W, et al. Single nucleotide polymorphisms in the toll-like receptor 2 (TLR2) gene are associated with microscopic polyangiitis in the northern Han Chinese population. Mod Rheumatol. 2015;25:224–9.

    Article  CAS  PubMed  Google Scholar 

  70. Husmann CA, Holle JU, Moosig F, Mueller S, Wilde B, Cohen Tervaert JW, et al. Genetics of toll like receptor 9 in ANCA associated vasculitides. Ann Rheum Dis. 2014;73:890–6.

    Article  CAS  PubMed  Google Scholar 

  71. Ortiz-Fernández L, López-Mejias R, Carmona FD, Castaño-Nuñez AL, Lyons PA, Caruz A, et al. The role of a functional variant of TYK2 in vasculitides and infections. Clin Exp Rheumatol. 2020;38:949–55.

    PubMed  Google Scholar 

  72. Kawasaki A, Yamashita K, Hirano F, Sada KE, Tsukui D, Kondo Y, et al. Association of ETS1 polymorphism with granulomatosis with polyangiitis and proteinase 3-anti-neutrophil cytoplasmic antibody positive vasculitis in a Japanese population. J Hum Genet. 2018;63:55–62.

    Article  CAS  PubMed  Google Scholar 

  73. Qi Y, Zhou X, Bu D, Hou P, Lv J, Zhang H. Low copy numbers of FCGR3A and FCGR3B associated with Chinese patients with SLE and AASV. Lupus. 2017;26:1383–9.

    Article  CAS  PubMed  Google Scholar 

  74. Tse WY, Abadeh S, Jefferis R, Savage CO, Adu D. Neutrophil FcgammaRIIIb allelic polymorphism in anti-neutrophil cytoplasmic antibody (ANCA)-positive systemic vasculitis. Clin Exp Immunol. 2000;119:574–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Willcocks LC, Lyons PA, Clatworthy MR, Robinson JI, Yang W, Newland SA, et al. Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. J Exp Med. 2008;205:1573–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fanciulli M, Norsworthy PJ, Petretto E, Dong R, Harper L, Kamesh L, et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet. 2007;39:721–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kelley JM, Monach PA, Ji C, Zhou Y, Wu J, Tanaka S, et al. IgA and IgG antineutrophil cytoplasmic antibody engagement of Fc receptor genetic variants influences granulomatosis with polyangiitis. Proc Natl Acad Sci USA. 2011;108:20736–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Persson U, Truedsson L, Westman KW, Segelmark M. C3 and C4 allotypes in anti-neutrophil cytoplasmic autoantibody (ANCA)-positive vasculitis. Clin Exp Immunol. 1999;116:379–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Persson U, Gullstrand B, Pettersson A, Sturfelt G, Truedsson L, Segelmark M. A candidate gene approach to ANCA-associated vasculitis reveals links to the C3 and CTLA-4 genes but not to the IL1-Ra and Fcgamma-RIIa genes. Kidney Blood Press Res. 2013;37:641–8.

    Article  CAS  PubMed  Google Scholar 

  80. Papiha SS, Murty GE, Ad’Hia A, Mains BT, Venning M. Association of Wegener’s granulomatosis with HLA antigens and other genetic markers. Ann Rheum Dis. 1992;51:246–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gencik M, Meller S, Borgmann S, Sitter T, Menezes Saecker AM, et al. The association of CD18 alleles with anti-myeloperoxidase subtypes of ANCA-associated systemic vasculitides. Clin Immunol. 2000;94:9–12.

    Article  CAS  PubMed  Google Scholar 

  82. Miyashita R, Tsuchiya N, Yabe T, Kobayashi S, Hashimoto H, Ozaki S, et al. Association of killer cell immunoglobulin-like receptor genotypes with microscopic polyangiitis. Arthritis Rheum. 2006;54:992–7.

    Article  CAS  PubMed  Google Scholar 

  83. Mamegano K, Kuroki K, Miyashita R, Kusaoi M, Kobayashi S, Matsuta K, et al. Association of LILRA2 (ILT1, LIR7) splice site polymorphism with systemic lupus erythematosus and microscopic polyangiitis. Genes Immun. 2008;9:214–23.

    Article  CAS  PubMed  Google Scholar 

  84. Zhou XJ, Cheng FJ, Lv JC, Luo H, Yu F, Chen M, et al. Higher DEFB4 genomic copy number in SLE and ANCA-associated small vasculitis. Rheumatology. 2012;51:992–5.

    Article  CAS  PubMed  Google Scholar 

  85. Reynolds WF, Stegeman CA, Tervaert JW. -463 G/A myeloperoxidase promoter polymorphism is associated with clinical manifestations and the course of disease in MPO-ANCA-associated vasculitis. Clin Immunol. 2002;103:154–60.

    Article  CAS  PubMed  Google Scholar 

  86. Kawasaki A, Namba N, Sada KE, Hirano F, Kobayashi S, Nagasaka K, et al. Association of TERT and DSP variants with microscopic polyangiitis and myeloperoxidase-ANCA positive vasculitis in a Japanese population: a genetic association study. Arthritis Res Ther. 2020;22:246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sada KE, Yamamura M, Harigai M, Fujii T, Dobashi H, Takasaki Y, et al. Classification and characteristics of Japanese patients with antineutrophil cytoplasmic antibody-associated vasculitis in a nationwide, prospective, inception cohort study. Arthritis Res Ther. 2014;16:R101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Schirmer JH, Wright MN, Vonthein R, Herrmann K, Nölle B, Both M, et al. Clinical presentation and long-term outcome of 144 patients with microscopic polyangiitis in a monocentric German cohort. Rheumatology. 2016;55:71–9.

    Article  PubMed  Google Scholar 

  89. Seibold MA, Wise AL, Speer MC, Steele MP, Brown KK, Loyd JE, et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med. 2011;364:1503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Juge PA, Lee JS, Ebstein E, Furukawa H, Dobrinskikh E, Gazal S, et al. MUC5B Promoter Variant and Rheumatoid Arthritis with Interstitial Lung Disease. N Engl J Med. 2018;379:2209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Namba N, Kawasaki A, Sada KE, Hirano F, Kobayashi S, Yamada H, et al. Association of MUC5B promoter polymorphism with interstitial lung disease in myeloperoxidase-antineutrophil cytoplasmic antibody-associated vasculitis. Ann Rheum Dis. 2019;78:1144–6.

    Article  PubMed  Google Scholar 

  92. Hancock LA, Hennessy CE, Solomon GM, Dobrinskikh E, Estrella A, Hara N, et al. Muc5b overexpression causes mucociliary dysfunction and enhances lung fibrosis in mice. Nat Commun. 2018;9:5363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Japan Research Committee of the Ministry of Health, Labour, and Welfare for Intractable Vasculitis (JPVAS) and the Japan Agency for Medical Research and Development for supporting our studies discussed in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Tsuchiya.

Ethics declarations

Conflict of interest

AK has received research grants from SENSHIN Medical Research Foundation, the Takeda Science Foundation, and the Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical Care. NT has received research fund from H.U. Group Research Institute for a collaborative research, and research grants from Bristol-Myers Squibb, The Naito Foundation, Mitsubishi Tanabe Pharma, 2015 Japan College of Rheumatology Award from Japan College of Rheumatology, 2017 Novartis Rheumatology Award from Japan Rheumatism Association with research funding, and speaker’s honoraria from Teijin.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawasaki, A., Tsuchiya, N. Advances in the genomics of ANCA-associated vasculitis—a view from East Asia. Genes Immun 22, 1–11 (2021). https://doi.org/10.1038/s41435-021-00123-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-021-00123-x

This article is cited by

Search

Quick links