Skip to main content
Log in

Interleukin-24 as a Pulmonary Target Cytokine in Bronchopulmonary Dysplasia

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The proliferation of fetal alveolar type II cells (FATIICs) was impaired in bronchopulmonary dysplasia (BPD), which is modulated by hyperoxia and inflammatory response. Interleukin 24 (IL-24), a cytokine produced by certain cell types, plays an essential role in inflammation and host protection against infection. However, the ability of FATIICs to produce IL-24 remains unclear, and the role of IL-24 in BPD progression is yet to be determined. With reverse transcription quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay, the authors evaluated whether FATIICs produce IL-24 in physiological conditions. The authors quantified IL-24 expression in the lungs of newborn rat pups exposed to hyperoxia (70% oxygen) and in FATIICs isolated on embryonic day 19 that were exposed to 95% oxygen or lipopolysaccharide (LPS). The role of IL-24 in FATIICs, cell proliferation, cell apoptosis, and cell cycle were further evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometric analysis. Also, they assessed caspase-3 and SOCS3 mRNA in IL-24 siRNA-treated cells by using RT-qPCR. During culture, IL-24 mRNA and protein levels in FATIICs gradually decreased with FATIIC differentiation. IL-24 expression increased significantly in rat lungs exposed to hyperoxia and FATIICs exposed to oxygen or LPS. Recombinant IL-24 enhanced cell proliferation by decreasing the proportion of apoptotic cells and increasing the proportion of cells in the S phase. The IL-24 siRNA-treated cells expressed more caspase-3 mRNA. Furthermore, suppressor of cytokine signaling 3 (SOCS3) mRNA was significantly decreased in rats and FATIICs exposed to oxygen, whereas it dramatically increased in FATIICs exposed to LPS. The IL-24 siRNA-treated cells expressed more SOCS3 mRNA. These studies suggest IL-24 is a pulmonary target cytokine in BPD, and may possibly regulate SOCS3 in oxidative stress and inflammation of the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morty, R. E. (2018). Recent advances in the pathogenesis of BPD. Seminars in Perinatology, 42(7), 404–412. https://doi.org/10.1053/j.semperi.2018.09.001.

    Article  PubMed  Google Scholar 

  2. Reiterer, F., Scheuchenegger, A., Resch, B., Maurer-Fellbaum, U., Avian, A., & Urlesberger, B. (2019). Bronchopulmonary dysplasia in very preterm infants: outcome up to preschool age, in a single center of Austria. Pediatrics International, 61(4), 381–387. https://doi.org/10.1111/ped.13815.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cheong, J., & Doyle, L. W. (2018). An update on pulmonary and neurodevelopmental outcomes of bronchopulmonary dysplasia. Seminars in Perinatology, 42(7), 478–484. https://doi.org/10.1053/j.semperi.2018.09.013.

    Article  PubMed  Google Scholar 

  4. Endesfelder, S., Strauss, E., Scheuer, T., Schmitz, T., & Buhrer, C. (2019). Antioxidative effects of caffeine in a hyperoxia-based rat model of bronchopulmonary dysplasia. Respiratory Research, 20(1), 88 https://doi.org/10.1186/s12931-019-1063-5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Velten, M., Heyob, K. M., Rogers, L. K., & Welty, S. E. (2010). Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure. Journal of Applied Physiology (1985), 108(5), 1347–1356. https://doi.org/10.1152/japplphysiol.01392.2009.

    Article  CAS  Google Scholar 

  6. Kandasamy, J., Rezonzew, G., Jilling, T., Ballinger, S. W., & Ambalavanan, N. (2019). Mitochondrial DNA variation modulates alveolar development in newborn mice exposed to hyperoxia. American Journal of Physiology—Lung Cellular and Molecular Physiology, https://doi.org/10.1152/ajplung.00220.2019.

  7. Yee, M., Buczynski, B. W., & O’Reilly, M. A. (2014). Neonatal hyperoxia stimulates the expansion of alveolar epithelial type II cells. American Journal of Respiratory Cell and Molecular Biology, 50(4), 757–766. https://doi.org/10.1165/rcmb.2013-0207OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bao, T. P., Wu, R., Cheng, H. P., Cui, X. W., & Tian, Z. F. (2016). Differential expression of long non-coding RNAs in hyperoxia-induced bronchopulmonary dysplasia. Cell Biochemistry & Function, 34(5), 299–309. https://doi.org/10.1002/cbf.3190.

    Article  CAS  Google Scholar 

  9. Menden, H. L., Xia, S., Mabry, S. M., Navarro, A., Nyp, M. F., & Sampath, V. (2016). Nicotinamide adenine dinucleotide phosphate oxidase 2 regulates LPS-induced inflammation and alveolar remodeling in the developing lung. American Journal of Respiratory Cell and Molecular Biology, 55(6), 767–778. https://doi.org/10.1165/rcmb.2016-0006OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huusko, J. M., Karjalainen, M. K., Mahlman, M., Haataja, R., Kari, M. A., & Andersson, S., et al. (2014). A study of genes encoding cytokines (IL6, IL10, TNF), cytokine receptors (IL6R, IL6ST), and glucocorticoid receptor (NR3C1) and susceptibility to bronchopulmonary dysplasia. BMC Medical Genetics, 15(120). https://doi.org/10.1186/s12881-014-0120-7.

  11. Mao, X., Qiu, J., Zhao, L., Xu, J., Yin, J., & Yang, Y., et al. (2018). Vitamin D and IL-10 deficiency in preterm neonates with bronchopulmonary dysplasia. Frontiers in Pediatrics, 6(246). https://doi.org/10.3389/fped.2018.00246.

  12. Lee, H. S., & Lee, D. G. (2015). rIL-10 enhances IL-10 signalling proteins in foetal alveolar type II cells exposed to hyperoxia. Journal of Cellular and Molecular Medicine, 19(7), 1538–1547. https://doi.org/10.1111/jcmm.12596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Madouri, F., Barada, O., Kervoaze, G., Trottein, F., Pichavant, M., & Gosset, P. (2018). Production of Interleukin-20 cytokines limits bacterial clearance and lung inflammation during infection by Streptococcus pneumoniae. EBioMedicine, 37 (417-427). https://doi.org/10.1016/j.ebiom.2018.10.031.

  14. Garn, H., Schmidt, A., Grau, V., Stumpf, S., Kaufmann, A., & Becker, M., et al. (2002). IL-24 is expressed by rat and human macrophages. Immunobiology, 205(3), 321–334. https://doi.org/10.1078/0171-2985-00135.

    Article  CAS  PubMed  Google Scholar 

  15. Seong, R. K., Choi, Y. K., & Shin, O. S. (2016). MDA7/IL-24 is an anti-viral factor that inhibits influenza virus replication.Journal of Microbiology, 54(10), 695–700. https://doi.org/10.1007/s12275-016-6383-2.

    Article  CAS  Google Scholar 

  16. Ross, B. X., Gao, N., Cui, X., Standiford, T. J., Xu, J., & Yu, F. X. (2017). IL-24 promotes Pseudomonas aeruginosa Keratitis in C57BL/6 mouse corneas. Journal of Immunology, 198(9), 3536–3547. https://doi.org/10.4049/jimmunol.1602087.

    Article  CAS  Google Scholar 

  17. Andoh, A., Shioya, M., Nishida, A., Bamba, S., Tsujikawa, T., & Kim-Mitsuyama, S., et al. (2009). Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. Journal of Immunology, 183(1), 687–695. https://doi.org/10.4049/jimmunol.0804169.

    Article  CAS  Google Scholar 

  18. Burmeister, A. R., Johnson, M. B., Yaemmongkol, J. J., & Marriott, I. (2019). Murine astrocytes produce IL-24 and are susceptible to the immunosuppressive effects of this cytokine. Journal of Neuroinflammation, 16(1), 55 https://doi.org/10.1186/s12974-019-1444-1.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hasnain, S. Z., Borg, D. J., Harcourt, B. E., Tong, H., Sheng, Y. H., & Ng, C. P., et al. (2014). Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nature Medicine, 20(12), 1417–1426. https://doi.org/10.1038/nm.3705.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, X. X., Yu, X. R., Jia, X. H., Wang, K. X., Yu, Z. Y., & Lv, C. J. (2013). Effect of hyperoxia on the viability and proliferation of the primary type II alveolar epithelial cells. Cell Biochemistry and Biophysics, 67(3), 1539–1546. https://doi.org/10.1007/s12013-013-9658-9.

    Article  CAS  PubMed  Google Scholar 

  21. Rao, X., Huang, X., Zhou, Z., & Lin, X. (2013). An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostatistics, Bioinformatics and Biomathematics, 3(3), 71–85.

    PubMed  PubMed Central  Google Scholar 

  22. Stoll, B. J., Hansen, N. I., Bell, E. F., Walsh, M. C., Carlo, W. A., & Shankaran, S., et al. (2015). Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA, 314(10), 1039–1051. https://doi.org/10.1001/jama.2015.10244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Madurga, A., Mizikova, I., Ruiz-Camp, J., Vadasz, I., Herold, S., & Mayer, K. et al. (2014). Systemic hydrogen sulfide administration partially restores normal alveolarization in an experimental animal model of bronchopulmonary dysplasia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 306(7), L684–L697. https://doi.org/10.1152/ajplung.00361.2013.

    Article  CAS  PubMed  Google Scholar 

  24. Surate, S. D., Rodriguez-Castillo, J. A., Ahlbrecht, K., & Morty, R. E. (2017). Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 313(6), L1101–L1153. https://doi.org/10.1152/ajplung.00343.2017.

    Article  CAS  Google Scholar 

  25. McGowan, E. C., Kostadinov, S., McLean, K., Gotsch, F., Venturini, D., & Romero, R., et al. (2009). Placental IL-10 dysregulation and association with bronchopulmonary dysplasia risk. Pediatrics Research, 66(4), 455–460. https://doi.org/10.1203/PDR.0b013e3181b3b0fa.

    Article  CAS  Google Scholar 

  26. Li, J., Wang, Z., Chu, Q., Jiang, K., Li, J., & Tang, N. (2018). The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Developmental Cell, 44(3), 297–312. https://doi.org/10.1016/j.devcel.2018.01.008.

    Article  CAS  PubMed  Google Scholar 

  27. Hou, A., Fu, J., Shi, Y., Qiao, L., Li, J., & Xing, Y. et al.(2018). Decreased ZONAB expression promotes excessive transdifferentiation of alveolar epithelial cells in hyperoxia-induced bronchopulmonary dysplasia. International Journal of Molecular Medicine, 41(4), 2339–2349. https://doi.org/10.3892/ijmm.2018.3413.

    Article  CAS  PubMed  Google Scholar 

  28. Ma, Q., Deng, X., Jin, B., Zhang, Y., Luo, D., & Song, H., et al. (2015). A novel human interleukin-24 peptide created by computer-guided design contributes to suppression of proliferation in esophageal squamous cell carcinoma Eca-109 cells. Oncology Reports, 33(1), 193–200. https://doi.org/10.3892/or.2014.3589.

    Article  CAS  PubMed  Google Scholar 

  29. Li, Z., Jiang, W., Wu, G., Ju, X., Wang, Y., & Liu, W. (2018). miR-16 inhibits hyperoxia-induced cell apoptosis in human alveolar epithelial cells. Molecular Medicine Reports, 17(4), 5950–5957. https://doi.org/10.3892/mmr.2018.8636.

    Article  CAS  PubMed  Google Scholar 

  30. Sun, J., Zheng, S., Yang, N., Chen, B., He, G., & Zhu, T. (2019). Dexmedetomidine inhibits apoptosis and expression of COX-2 induced by lipopolysaccharide in primary human alveolar epithelial type 2 cells. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2019.07.023.

  31. Bahmed, K., Lin, C. R., Simborio, H., Karim, L., Aksoy, M., & Kelsen, S., et al. (2019). The role of DJ-1 in human primary alveolar type II cell injury induced by e-cigarette aerosol. American Journal of Physiology—Lung Cellular and Molecular Physiology, https://doi.org/10.1152/ajplung.00567.2018.

  32. Luo, Y. H., Kuo, Y. C., Tsai, M. H., Ho, C. C., Tsai, H. T., & Hsu, C. Y., et al. (2017). Interleukin-24 as a target cytokine of environmental aryl hydrocarbon receptor agonist exposure in the lung. Toxicology and Applied Pharmacology, 324(1-11. https://doi.org/10.1016/j.taap.2017.03.019.

  33. Chen, X., Liu, D., Wang, J., Su, Q., Zhou, P., & Liu, J., et al. (2014). Suppression effect of recombinant adenovirus vector containing hIL-24 on Hep-2 laryngeal carcinoma cells. Oncology Letters, 7(3), 771–777. https://doi.org/10.3892/ol.2014.1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fan, S., Gao, H., Ji, W., Zhu, F., Sun, L., & Liu, Y., et al. (2019). Umbilical cord-derived mesenchymal stromal/stem cells expressing IL-24 induce apoptosis in gliomas. Journal of Cell Physiology, https://doi.org/10.1002/jcp.29095.

  35. Li, Y., Zhang, H., Zhu, X., Feng, D., Gong, J., & Han, T. (2013). Interleukin-24 induces neuroblastoma SH-SY5Y cell differentiation, growth inhibition, and apoptosis by promoting ROS production. Journal of Interferon & Cytokine Research, 33(11), 709–714. https://doi.org/10.1089/jir.2013.0004.

    Article  CAS  Google Scholar 

  36. He, M., & Liang, P. (2010). IL-24 transgenic mice: in vivo evidence of overlapping functions for IL-20, IL-22, and IL-24 in the epidermis. Journal of Immunology, 184(4), 1793–1798. https://doi.org/10.4049/jimmunol.0901829.

    Article  CAS  Google Scholar 

  37. Chen, H., Liu, C., Chen, C., Su, Z., Shu, J., & Zhang, M., et al. (2019). Bone morphogenetic protein 4 regulates immortalized chicken preadipocyte proliferation by promoting G1/S cell cycle progression. FEBS Open Bio, 9(6), 1109–1118. https://doi.org/10.1002/2211-5463.12640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, Y., & Bai, L. (2019). Resveratrol inhibits apoptosis by increase in the proportion of chondrocytes in the S phase of cell cycle in articular cartilage of ACLT plus Mmx rats. Saudi Journal of Biological Sciences, 26(4), 839–844. https://doi.org/10.1016/j.sjbs.2017.04.010.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang, Z., Chen, Z., Li, L., Zhou, W., & Zhu, L. (2017). Lack of SOCS3 increases LPS-induced murine acute lung injury through modulation of Ly6C(+) macrophages. Respiratory Research, 18(1), 217 https://doi.org/10.1186/s12931-017-0707-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duan, W. N., Xia, Z. Y., Liu, M., Sun, Q., Lei, S. Q., & Wu, X. J., et al. (2017). Protective effects of SOCS3 overexpression in high glucoseinduced lung epithelial cell injury through the JAK2/STAT3 pathway. Molecular Medicine Reports, 16(3), 2668–2674. https://doi.org/10.3892/mmr.2017.6941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun, D., Wang, J., Yang, N., & Ma, H. (2016). Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-kappaB signaling in airway epithelial cells and asthmatic mice. Biochemical and Biophysical Research Communications, 477(1), 83–90. https://doi.org/10.1016/j.bbrc.2016.06.024.

    Article  CAS  PubMed  Google Scholar 

  42. Will, J. P., Hirani, D., Thielen, F., Klein, F., Vohlen, C., & Dinger, K. et al.(2019). Strain-dependent effects on lung structure, matrix remodeling, and Stat3/Smad2 signaling in C57BL/6N and C57BL/6J mice after neonatal hyperoxia. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 317(1), R169–R181. https://doi.org/10.1152/ajpregu.00286.2018.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the key scientific and technological project of the Chinese Ministry of Education (grant no. 212103). The experiment of the expression of IL-24 in lungs exposed to hyperoxia and FATIICs exposed to oxygen and LPS was conducted at the Children’s Hospital of Fudan University. The experiment on the role of IL-24 in FATIIC development was conducted in Binzhou Medical University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Chen or Xiuxiang Liu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Li, Z., Ai, D. et al. Interleukin-24 as a Pulmonary Target Cytokine in Bronchopulmonary Dysplasia. Cell Biochem Biophys 79, 311–320 (2021). https://doi.org/10.1007/s12013-021-00968-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-00968-z

Keywords

Navigation