Skip to main content
Log in

Global large solutions to the two-dimensional compressible Navier–Stokes equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We obtain the global large solutions to the compressible Navier–Stokes equations in \({\mathbb {R}}^2\). The solution is large in the sense that there is no smallness assumption applied to one component of the initial incompressible velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)

    Book  Google Scholar 

  2. Charve, F., Danchin, R.: A global existence result for the compressible Navier–Stokes equations in the critical \(L^p\) framework. Arch. Ration. Mech. Anal. 198, 233–271 (2010)

    Article  MathSciNet  Google Scholar 

  3. Chen, Q., Miao, C., Zhang, Z.: Global well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocity. Commun. Pure Appl. Math. 63, 1173–1224 (2010)

    Article  MathSciNet  Google Scholar 

  4. Chen, Q., Miao, C., Zhang, Z.: Well-posedness in critical spaces for the compressible Navier–Stokes equations with density dependent viscosities. Rev. Mat. Iberoam. 26, 915–946 (2010)

    Article  MathSciNet  Google Scholar 

  5. Chen, Q., Miao, C., Zhang, Z.: On the ill-posedness of the compressible Navier–Stokes equations in the critical Besov spaces. Rev. Mat. Iberoam. 31, 1375–1402 (2015)

    Article  MathSciNet  Google Scholar 

  6. Chen, Z., Zhai, X.: Global large solutions and incompressible limit for the compressible Navier–Stokes equations. J. Math. Fluid Mech. 21, Art. 26, 23 (2019)

  7. Danchin, R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  MathSciNet  Google Scholar 

  8. Danchin, R.: A Lagrangian approach for the compressible Navier–Stokes equations. Ann. Inst. Fourier (Grenoble) 64, 753–791 (2014)

    Article  MathSciNet  Google Scholar 

  9. Danchin, R., Mucha, P.: Compressible Navier–Stokes system: large solutions and incompressible limit. Adv. Math. 320, 904–925 (2017)

    Article  MathSciNet  Google Scholar 

  10. Fang, D., Zhang, T., Zi, R.: Global solutions to the isentropic compressible Navier–Stokes equations with a class of large initial data. SIAM J. Math. Anal. 50, 4983–5026 (2018)

    Article  MathSciNet  Google Scholar 

  11. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  12. Feireisl, E., Novotný, A., Petzeltová, H.: On the global existence of globally defined weak solutions to the Navier–Stokes equations of isentropic compressible fluids. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MathSciNet  Google Scholar 

  13. Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Dissipative measure-valued solutions to the compressible Navier–Stokes system. Calc. Var. Partial Differ. 55, 55–141 (2016)

    Article  MathSciNet  Google Scholar 

  14. Feireisl, E., Novotný, A., Sun, Y.: Suitable weak solutions to the Navier–Stokes equations of compressible viscous fluids. Indiana Univ. Math. J. 60, 611–631 (2011)

    Article  MathSciNet  Google Scholar 

  15. Haspot, B.: Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Ration. Mech. Anal. 202, 427–460 (2011)

    Article  MathSciNet  Google Scholar 

  16. He, L., Huang, J., Wang, C.: Global stability of large solutions to the 3D compressible Navier–Stokes equations. Arch. Ration. Mech. Anal. 234, 1167–1222 (2019)

    Article  MathSciNet  Google Scholar 

  17. Hoff, D.: Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120, 215–254 (1995)

    Article  MathSciNet  Google Scholar 

  18. Huang, J., Paicu, M., Zhang, P.: Global well-posedness of incompressible inhomogeneous fluid systems with bounded density or non-Lipschitz velocity. Arch. Ration. Mech. Anal. 209, 631–682 (2013)

    Article  MathSciNet  Google Scholar 

  19. Huang, X., Li, J., Xin, Z.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equaitons. Commun. Pure Appl. Math. 65, 549–585 (2012)

    Article  Google Scholar 

  20. Kotschote, M.: Dynamical stability of non-constant equilibria for the compressible Navier–Stokes equations in Eulerian coordinates. Commun. Math. Phys. 328, 809–847 (2014)

    Article  MathSciNet  Google Scholar 

  21. Lions, P.L.: Mathematical Topics in Fluid Mechanics, Compressible Models, vol. 2. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  22. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A Math. Sci. 55, 337–342 (1979)

    Article  MathSciNet  Google Scholar 

  23. Paicu, M., Zhang, P.: Global solutions to the 3-D incompressible inhomogeneous Navier–Stokes system. J. Funct. Anal. 262, 3556–3584 (2012)

    Article  MathSciNet  Google Scholar 

  24. Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202, 950 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Wang, C., Wang, W., Zhang, Z.: Global well-posedness of compressible Navier–Stokes equations for some classes of large initial data. Arch. Ration. Mech. Anal. 213, 171–214 (2014)

    Article  MathSciNet  Google Scholar 

  26. Xin, Z.: Blowup of smooth solutions to the compressible Navier–Stokes equation with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)

    Article  MathSciNet  Google Scholar 

  27. Zhai, X., Li, Y., Zhou, F.: Global large solutions to the three dimensional compressible Navier–Stokes equations. SIAM J. Math. Anal. 52, 1806–1843 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the NSFC under the Grant Number 11601533, the Natural Science Foundation of Guangdong Province of China under Grant 2020B1515310008 and the Project of Educational Commission of Guangdong Province of China under Grant 2019KZDZX1007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Zhai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Chen, ZM. Global large solutions to the two-dimensional compressible Navier–Stokes equations. Z. Angew. Math. Phys. 72, 62 (2021). https://doi.org/10.1007/s00033-021-01501-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01501-1

Keywords

Mathematics Subject Classification

Navigation