Skip to main content
Log in

Predicting potential knowledge convergence of solar energy: bibliometric analysis based on link prediction model

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The innovation and development of emerging technology mostly depend on the way of knowledge convergence defined as the blurring of previously distinct domain-specific knowledge. This paper aims to explore the potential motivation of knowledge convergence and find the law of knowledge convergence, taking the solar energy field as an example. We established Keywords co-occurrence networks of solar energy literature in 2008–2017, and then link prediction is introduced to study the structural mechanism of knowledge convergence. We found that: (1) the common neighbor index better characterizes the knowledge convergence pattern in the knowledge networks among four similarity indicators. (2) The keywords co-occurrence network could effectively mine the structural characteristics of knowledge convergence; (3) the convergence cycle of knowledge in the field of solar energy was about 4 years; (4) keywords with higher betweenness centrality or eigenvector centrality easily generated knowledge convergence; (5) a literature knowledge convergence prediction model is proposed based on these results; and (6) the prediction results showed that scholars should pay attention to six basic issues including energy storage, efficiency, cost, ecological effect, application scenarios, and hybrid photovoltaic systems. This work can provide guidance not only for scholars to grasp the research direction and to generate more innovations but for the government to formulate the policies of government funding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

The data of this study is downloaded from Web of Science, which is a public literature database. It can be downloaded by any paying user.

Code availability

In this paper, the experiment on network structure is completed by the software Gephi, and the link prediction model is completed by the custom coding in MATLAB.

References

  • Aaldering, L. J., & Song, C. H. (2019). Tracing the technological development trajectory in post-lithium-ion battery technologies: A patent-based approach. Journal of Cleaner Production, 241, 118343.

    Article  Google Scholar 

  • Armaroli, N., & Balzani, V. (2016). Solar Electricity and solar fuels: Status and perspectives in the context of the energy transition. Chemistry-A European Journal., 22(1), 32–57.

    Article  Google Scholar 

  • Barabasi, A. L., & Albert, R. (1999). Albert, r.: emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  MathSciNet  MATH  Google Scholar 

  • Bonacich, P., & Lloyd, P. (2001). Eigenvector-like measures of centrality for asymmetric relations. Social Networks, 23(3), 191–201.

    Article  Google Scholar 

  • Boussemart, J. P., Leleu, H., Mensah, E., & Shitikova, K. (2020). Technological catching-up and structural convergence among US industries. Economic Modelling, 84, 135–146.

    Article  Google Scholar 

  • Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology., 25(2), 163–177.

    Article  MATH  Google Scholar 

  • Chae, Y. T., Kim, J., Park, H., & Shin, B. (2014). Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells. Applied Energy., 129, 217–227.

    Article  Google Scholar 

  • Chan, S. K., & Miyazaki, K. (2015). Knowledge convergence between cloud computing and big data and analysis of emerging technological opportunities in malaysia. In Picmet '15 Portland International Center for Management of Engineering and Technology, pp. 1501–1512.

  • Choudhury, N., & Uddin, S. (2016). Time-aware link prediction to explore network effects on temporal knowledge evolution. Scientometrics, 108(2), 745–776.

    Article  Google Scholar 

  • Clauset, A., Moore, C., & Newman, M. E. J. (2008). Hierarchical structure and the prediction of missing links in networks. Nature, 453(7191), 98–101.

    Article  Google Scholar 

  • de Paulo, A. F., & Porto, G. S. (2017). Solar energy technologies and open innovation: A study based on bibliometric and social network analysis. Energy Policy, 108, 228–238.

    Article  Google Scholar 

  • Dennler, G., Scharber, M. C., Ameri, T., Denk, P., Forberich, K., Waldauf, C., et al. (2008). Design rules for donors in bulk-heterojunction tandem solar cells-towards 15 % energy-conversion efficiency. Advanced Materials, 20(3), 579.

    Article  Google Scholar 

  • Dincer, F. (2011). The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy. Renewable & Sustainable Energy Reviews, 15(1), 713–720.

    Article  Google Scholar 

  • Du, H. B., Li, N., Brown, M. A., Peng, Y. N., & Shuai, Y. (2014). A bibliographic analysis of recent solar energy literatures: The expansion and evolution of a research field. Renewable Energy, 66, 696–706.

    Article  Google Scholar 

  • Fahimnia, B., Tang, C. S., Davarzani, H., & Sarkis, J. (2015). Quantitative models for managing supply chain risks: A review. European Journal of Operational Research, 247(1), 1–15.

    Article  MATH  Google Scholar 

  • Ferreira, A., Kunh, S. S., Fagnani, K. C., De Souza, T. A., Tonezer, C., Dos Santos, G. R., et al. (2018). Economic overview of the use and production of photovoltaic solar energy in brazil. Renewable & Sustainable Energy Reviews, 81, 181–191.

    Article  Google Scholar 

  • Fthenakis, V., Mason, J. E., & Zweibel, K. (2009). The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US. Energy Policy, 37(2), 387–399.

    Article  Google Scholar 

  • Goh, K. I., Oh, E., Kahng, B., & Kim, D. (2003). Betweenness centrality correlation in social networks. Physical Review E, 67(1), 017101.

    Article  Google Scholar 

  • Guan, Q., An, H. Z., Gao, X. Y., Huang, S. P., & Li, H. J. (2016). Estimating potential trade links in the international crude oil trade: A link prediction approach. Energy, 102, 406–415.

    Article  Google Scholar 

  • Hanley, J. A., & Mcneil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (Roc) curve. Radiology, 143(1), 29–36.

    Article  Google Scholar 

  • Jaccard, P. (1901). étude comparative de la distribution florale dans une portion des Alpes et du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 547–579.

    Google Scholar 

  • Jeong, D., Lee, K., & Cho, K. (2018). Relationships among international joint research, knowledge diffusion, and science convergence: the case of secondary batteries and fuel cells. Asian Journal of Technology Innovation, 26(2), 246–268.

    Article  Google Scholar 

  • Kebede, K. Y., & Mitsufuji, T. (2017). Technological innovation system building for diffusion of renewable energy technology: A case of solar PV systems in Ethiopia. Technological Forecasting and Social Change, 114, 242–253.

    Article  Google Scholar 

  • Kim, J., & Diesner, J. (2019). Formational bounds of link prediction in collaboration networks. Scientometrics, 119(2), 687–706.

    Article  Google Scholar 

  • Kose, T., & Sakata, I. (2019). Identifying technology convergence in the field of robotics research. Technological Forecasting and Social Change, 146, 751–766.

    Article  Google Scholar 

  • Kossinets, G. (2006). Effects of missing data in social networks. Social Networks, 28(3), 247–268.

    Article  Google Scholar 

  • Li, H. J., An, H. Z., Wang, Y., Huang, J. C., & Gao, X. Y. (2016). Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network. Physica A: Statistical Mechanics and its Applications, 450, 657–669.

    Article  Google Scholar 

  • Li, J., Xiong, J. G., & Wang, X. J. (2015). The structure and evolution of large cascades in online social networks. Computational Social Networks, Csonet, 2015(9197), 273–284.

    Article  Google Scholar 

  • Li, Y., Li, H. J., Liu, N. R., & Liu, X. Y. (2018). Important institutions of interinstitutional scientific collaboration networks in materials science. Scientometrics, 117(1), 85–103.

    Article  Google Scholar 

  • Liben-Nowell, D., & Kleinberg, J. (2007). The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 58(7), 1019–1031.

    Article  Google Scholar 

  • Lim, S., Kwon, O., & Lee, D. H. (2018). Technology convergence in the Internet of Things (IoT) startup ecosystem: A network analysis. Telematics and Informatics, 35(7), 1887–1899.

    Article  Google Scholar 

  • Linton, C., & Freeman. (1978). Centrality in social networks conceptual clarification. Social Networks.

  • Lu, L. Y., Jin, C. H., & Zhou, T. (2009). Similarity index based on local paths for link prediction of complex networks. Physical Review E, 80(4), 046122.

    Article  Google Scholar 

  • Lu, L. Y., & Zhou, T. (2011). Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications, 390(6), 1150–1170.

    Article  Google Scholar 

  • McEachern, M., & Hanson, S. (2008). Socio-geographic perception in the diffusion of innovation: Solar energy technology in Sri Lanka. Energy Policy, 36(7), 2578–2590.

    Article  Google Scholar 

  • Morfa, A. J., Rowlen, K. L., Reilly, T. H., Romero, M. J., & van de Lagemaat, J. (2008). Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Applied Physics Letters, 92(1), 1551.

    Article  Google Scholar 

  • Nocera, D. G. (2009). Chemistry of Personalized Solar Energy. Inorganic Chemistry, 48(21), 10001–10017.

    Article  Google Scholar 

  • N’Tsoukpoe, K. E., Liu, H., Le Pierres, N., & Luo, L. G. (2009). A review on long-term sorption solar energy storage. Renewable & Sustainable Energy Reviews, 13(9), 2385–2396.

    Article  Google Scholar 

  • Park, I., & Yoon, B. (2018). Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network. Journal of Informetrics, 12(4), 1199–1222.

    Article  Google Scholar 

  • Pilkington, A., & Meredith, J. (2009). The evolution of the intellectual structure of operations management-1980-2006: A citation/co-citation analysis. Journal of Operations Management, 27(3), 185–202.

    Article  Google Scholar 

  • Sahu, B. K. (2015). A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries. Renewable & Sustainable Energy Reviews, 43, 621–634.

    Article  Google Scholar 

  • Sampaio, P. G. V., & Gonzalez, M. O. A. (2017). Photovoltaic solar energy: Conceptual framework. Renewable & Sustainable Energy Reviews, 74, 590–601.

    Article  Google Scholar 

  • Sanz-Casado, E., Lascurain-Sanchez, M. L., Serrano-Lopez, A. E., Larsen, B., & Ingwersen, P. (2014). Production, consumption and research on solar energy: The Spanish and German case. Renewable Energy, 68, 733–744.

    Article  Google Scholar 

  • Schulze, T. F., & Schmidt, T. W. (2015). Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy & Environmental Science, 8(1), 103–125.

    Article  Google Scholar 

  • Shaner, M. R., Atwater, H. A., Lewis, N. S., & McFarland, E. W. (2016). A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy & Environmental Science, 9(7), 2354–2371.

    Article  Google Scholar 

  • Sharon, H., & Reddy, K. S. (2015). A review of solar energy driven desalination technologies. Renewable & Sustainable Energy Reviews, 41, 1080–1118.

    Article  Google Scholar 

  • Sick, N., Preschitschek, N., Leker, J., & Broring, S. (2019). A new framework to assess industry convergence in high technology environments. Technovation, 84–85, 48–58.

    Article  Google Scholar 

  • Stucki, T., & Woerter, M. (2019). The private returns to knowledge: A comparison of ICT, biotechnologies, nanotechnologies, and green technologies. Technological Forecasting and Social Change, 145, 62–81.

    Article  Google Scholar 

  • von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S., et al. (2002). Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 417(6887), 399–403.

    Article  Google Scholar 

  • Wong, W. Y., & Ho, C. L. (2010). Organometallic photovoltaics: A new and versatile approach for harvesting solar energy using conjugated polymetallaynes. Accounts of Chemical Research, 43(9), 1246–1256.

    Article  Google Scholar 

  • Yang, Y. H., & Ping, Y. (2018). An ontology-based semantic similarity computation model. In 2018 IEEE international conference on big data and smart computing (Bigcomp), pp. 561–564.

  • Yu, H. Y., Braun, P., Yildirim, M. A., Lemmens, I., Venkatesan, K., Sahalie, J., et al. (2008). High-quality binary protein interaction map of the yeast interactome network. Science, 322(5898), 104–110.

    Article  Google Scholar 

  • Yun, J., & Geum, Y. (2019). Analysing the dynamics of technological convergence using a co-classification approach: A case of healthcare services. Technology Analysis and Strategic Management, 31(12), 1–18.

    Article  Google Scholar 

  • Zhang, J. J., & Guan, J. C. (2017). Scientific relatedness and intellectual base: a citation analysis of un-cited and highly-cited papers in the solar energy field. Scientometrics, 110(1), 141–162.

    Article  Google Scholar 

  • Zhou, T., Lu, L. Y., & Zhang, Y. C. (2009). Predicting missing links via local information. European Physical Journal B, 71(4), 623–630.

    Article  MATH  Google Scholar 

  • Zhou, W., Gu, J. Y., & Jia, Y. F. (2018). h-Index-based link prediction methods in citation network. Scientometrics, 117(1), 381–390.

    Article  Google Scholar 

  • Zhou, Y., Dong, F., Kong, D. J., & Liu, Y. F. (2019). Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies. Technological Forecasting and Social Change, 144, 205–220.

    Article  Google Scholar 

  • Zhu, W. J., & Guan, J. C. (2013). A bibliometric study of service innovation research: based on complex network analysis. Scientometrics, 94(3), 1195–1216.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Jianhe Guan, Yixiong Zhang and Kaiming Wang who helped a lot during this work, including processing data and providing analysis suggestions.

Funding

This research is supported by grants from the National Natural Science Foundation of China (Grant No. 42001236, 71991481, 71991480), Beijing Outstanding Talent Training Foundation (Grant No. 2018000020124G151), and the Fundamental Research Funds for the Central Universities (Grant No. 2-9-2018-079).

Author information

Authors and Affiliations

Authors

Contributions

Duan Yueran organized and wrote the paper. Guan Qing provided several suggestions and revised the paper.

Corresponding author

Correspondence to Qing Guan.

Ethics declarations

Conflict of interest

We have no potential conflict of interest or competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Guan, Q. Predicting potential knowledge convergence of solar energy: bibliometric analysis based on link prediction model. Scientometrics 126, 3749–3773 (2021). https://doi.org/10.1007/s11192-021-03901-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-021-03901-6

Keywords

Navigation