Skip to main content
Log in

ApeX-Vigne: experiences in monitoring vine water status from within-field to regional scales using crowdsourcing data from a free mobile phone application

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Monitoring vine water status is a major issue for vineyard management because water constraints impact both the quality and the quantity of the harvest. Existing methods are often costly and complex to implement. ApeX-Vigne is a free mobile application developed to facilitate the collection and geolocation of 50 vine apex observations to characterise vine shoot growth and classify it into 3 growth categories. The application also provides the user with a simple estimate of vine water status based on shoot growth. This paper presents the results obtained over two seasons (2019 and 2020) after the launch of the Apex-Vigne application and its use over a large wine producing region in the south of France. An existing method was adapted for evaluating the interest of the application based on the number of installations and uninstallations. The results showed that the application had more than 1200 downloads and 6000 observations made in the 2020 season. Examples from the commercially collected data showed that ApeX-Vigne can be used as a tool for characterizing water stress at within-field and inter-field scales. Finally, it was also demonstrated that by enabling the massive and centralized collection of spatial field and within-field scale observations of shoot growth, the ApeX-Vigne data was able to characterise the spatial structure of vine water status at the regional scale. Access to this new source of information offers opportunities for the management of water resources at a regional scale as well as for site- and vineyard-specific management. These results also raised new research questions on the joint use of this new source of spatial data with other sources of high spatial resolution information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data collected in this project is not available. Please contact the corresponding author to access the data.

Code availability

The code of the ApeX-Vigne application is available online at: https://github.com/Agrotic-Supagro/ApexV3.

References

  • Agreste, Recensement agricole (Census of Agriculture). (2010). [web] (consulted on 30/09/2020) https://www.agreste.agriculture.gouv.fr/

  • Baralon, K., Payan, J.-C., Salançon, E., & Tisseyre, B. (2012). SPIDER: spatial extrapolation of the vine water status at the whole denomination scale from a reference site. Journal International Des Sciences De La Vigne et Du Vin, 46(3), 167–175.

    Google Scholar 

  • Ben Salem-Fnayou, A., Bouamama, B., & Wahed, A. (2011). Investigations on the leaf anatomy and ultrastructure of grapvine (Vitis vinifera) under heat stress. Microscopy Research and Technique, 74, 756–762.

    Article  Google Scholar 

  • Bota, J., Flexas, J., & Medrano, H. (2001). Genetic variability of photosynthesis and water use in Balearic Grapevine cultivars. Annals of Applied Biology, 138, 353–361.

    Article  Google Scholar 

  • Brunel, G., Pichon, L., Taylor, J. A., & Tisseyre, B. (2019). Easy water stress detection system for vineyard irrigation management. In: J. V. Stafford (Ed.) Precision Agriculture ’19: Proceedings of the 12th European Conference on Precision Agriculture, ECPA 2019, Wageningen, The Netherlands: Wageningen Academic Publishers. pp. 935–942

  • Cifre, J., Bota, J., Escalona, J. M., Medrano, H., & Flexas, J. (2005). Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.). An open gate to improve water-use efficiency? Agriculture, Ecosystems & Environment, 106, 159–170.

    Article  Google Scholar 

  • Dehnen-Schmutz, K., Foster, G. L., Owen, L., & Persello, S. (2016). Exploring the role of smartphone technology for citizen science in agriculture. Agronomy for Sustainable Development, 36, 25.

    Article  Google Scholar 

  • Deloire, A., Carbonneau, A., Wang, Z., & Ojeda, H. (2004). Vine and water a short review. Journal International Des Sciences de La Vigne et Du Vin, 38(1), 1–13.

    CAS  Google Scholar 

  • Fogliaroni, P., D’Antonio, F., & Clementini, E. (2018). Data trustworthiness and user reputation as indicators of VGI quality. Geo-Spatial Information Science, 21(3), 213–233.

    Article  Google Scholar 

  • Goodchild, M. F., & Li, L. (2012). Assuring the Quality of Volunteered Geographic Information. Spatial Statistics, 1, 110–120.

    Article  Google Scholar 

  • Hunter, J.-J.K., Tarricone, L., Volschenk, C., Giacalone, C., Susete Melo, M., & Zorer, R. (2020). Grapevine Physiological Response to Row Orientation-Induced Spatial Radiation and Microclimate Changes. Oeno One, 54(2), 411–433.

    Article  Google Scholar 

  • INAO, Institut National de l’origine et de la qualité (National Institute of Origin and Quality) 2020 [web] (consulted on 16/07/2020) https://www.inao.gouv.fr/eng/

  • IGN, Institut national de l'information géographique et forestière (National Institute of Geographic and Forest Information) 2020 [web] (consulted on 16/07/2020) https://www.ign.fr/institut/identity-card

  • Joly, A., Bonnet, P., Goëau, H., Barbe, J., Selmi, S., Champ, J., et al. (2016). A Look inside the Pl@NtNet Experience. Multimedia Systems, 22(6), 751–766.

    Article  Google Scholar 

  • Kerry, R., & Oliver, M. A. (2007). Sampling requirements for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma, 140, 383–396.

    Article  Google Scholar 

  • Leibar, U., Unamunzaga, O., Fernández-Gómez, M. J., Galindo-Villardon, P., Castro, C., & Aizpurua, A. (2018). Benefit of ancillary data acquired at the cooperative level to study soil type and climatic zone influence on berry composition: A case study in Rioja Appellation. Oeno One, 52(2), 119–133.

    Article  Google Scholar 

  • Liu, X., Li, H., Lu, X., Xie, T., Mei, Q., Feng, F., et al. (2018). Understanding diverse usage patterns from large-scale appstore-service Profiles. IEEE Transactions on Software Engineering, 44(4), 384–411.

    Article  Google Scholar 

  • Martinez-De-Toda, F., Balda, P. and Oliveira, M. (2010). Estimation of Vineyard water status (Vitis Vinifera L. Cv. Tempranillo) from the developmental stage of the shoot tips. Journal International Des Sciences de La Vigne et Du Vin, 44(4), 201–6.

  • Météo France (French Institute of Meteorology and Climatology) 2020 [web] (consulted on 16/07/2020): https://meteofrance.com/

  • Michels, M., Fecke, W., Feil, J. H., Musshoff, O., Pigisch, J., & Krone, S. (2020). Smartphone adoption and use in agriculture: Empirical evidence from Germany. Precision Agriculture, 21, 403–425.

    Article  Google Scholar 

  • Minet, J., Curnel, Y., Gobin, A., Goffart, J. P., Mélard, F., Tychon, B., et al. (2017). Crowdsourcing for agricultural applications: A review of uses and opportunities for a farm sourcing approach. Computers and Electronics in Agriculture, 142(Part A), 126–138.

    Article  Google Scholar 

  • Mishra, U., Lal, R., Liu, D., & Van Meirvenne, M. (2010). Predicting the spatial variation of the soil organic carbon pool at a regional scale. Soil Science Society of America Journal, 74(3), 906–914.

    Article  CAS  Google Scholar 

  • Naulleau, A., Gary, C., Prévot, L., & Hossard, L. (2021). Evaluating strategies for adaptation to climate change in grapevine production—A systematic review. Frontiers in Plant Science, 11, 1–20.

    Article  Google Scholar 

  • Oliver, M. A., & Webster, R. (2015). Basic steps in geostatistics: The Variogram and Kriging (pp. 1–99). Cham, Switzerland: Springer International Publishing.

    Google Scholar 

  • Parker, A. K., García De Cortázar-atauri, I., Trought, M. C. T., Destrac, A., & Agnew, R. (2020). Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models. Oeno One, 54(4), 955–974.

    Article  CAS  Google Scholar 

  • Payan, J. C. (2020). Peut-on réduire la sensibilité au changement climatique sans irriguer ? (Can sensitivity to climate change be reduced without irrigation?). Entretiens de la vigne et du vin – Languedoc Roussillon 2020 - February 13th - Narbonne.

  • Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30, 683–691.

    Article  Google Scholar 

  • Pellegrino, A., Lebon, E., Simonneau, T., & Wery, J. (2005). Towards a simple indicator of water stress in grapevine (Vitis Vinifera L.) based on the differential sensitivities of vegetative growth components. Australian Journal of Grape and Wine Research, 11(3), 306–15.

    Article  Google Scholar 

  • Picaut, J., Fortin, N., Bocher, E., Petit, G., Aumond, P., & Guillaume, G. (2019). An open-science crowdsourcing approach for producing community noise maps using smartphones. Building and Environment, 148, 20–33.

    Article  Google Scholar 

  • QGIS Development Team (2020). QGIS Geographic Information System. Open Source Geospatial Foundation. URL http://qgis.osgeo.org

  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, URL: http://www.R-project.org

  • Rahmati, A., & Zhong, L. (2013). Studying smartphone usage: Lessons from a four-month field study. IEEE Transactions on Mobile Computing, 12(7), 1417–1427.

    Article  Google Scholar 

  • Rey, D., & Neuhäuser, M. (2011). Wilcoxon-Signed-Rank Test. In M. Lovric (Ed.), International encyclopedia of statistical science. Berlin, Heidelberg, Germany: Springer.

    Google Scholar 

  • Rienth, M., & Scholasch, T. (2019). State-of-the-art of tools and methods to assess vine water status. OENO One, 53(4), 619–637.

    Article  Google Scholar 

  • Rodriguez, L. B., Trambouze, W., & Jacquet, O. (2009). Évaluation de l´état de croissance végétative de la vigne par la méthode des apex (Evaluation of vine vegetative growth by the apex method). Progrès Agricole et Viticole, 126, 77–88.

    Google Scholar 

  • Rogstadius, J., Vukovic, M., Teixeira, C.A., Kostakos, V., Karapanos, E., & Laredo, J. A. (2013). CrisisTracker: Crowdsourced social media curation for disaster awareness. IBM Journal of Research and Development, 57(5), 4:1–4:13.

  • Santesteban, L. G., Guillaume, S. B., Royo, J., & Tisseyre, B. (2012). Are precision agriculture tools and methods relevant at the whole-vineyard scale? Precision Agriculture, 14(1), 2–17.

    Article  Google Scholar 

  • Schultz, H. R. (2017). Issues to be considered for strategic adaptation to climate evolution is atmospheric evaporative demand changing ? Oeno One, 51(2), 107–114.

    Article  Google Scholar 

  • Senaratne, H., Mobasheri, A., Loai Ali, A., Capineri, C., & Haklay, M. (2016). A review of volunteered geographic information quality assessment methods. International Journal of Geographical Information Science, 31(1), 139–167.

    Article  Google Scholar 

  • Severinsen, J., de Roiste, M., Reitsma, F., & Hartato, E. (2019). VGTrust: Measuring trust for volunteered geographic information. International Journal of Geographical Information Science, 33(8), 1683–1701.

    Article  Google Scholar 

  • Taylor, J. A., Acevedo-Opazo, C., Pellegrino, A., Ojeda, H., & Tisseyre, B. (2011). A comment on inter-field spatial extrapolation of vine (Vitis vinifera L.) water status. Journal International Des Sciences De La Vigne et Du Vin, 45(2), 121–124.

    Google Scholar 

  • Tisseyre, B., Ojeda, H., Carillo, N., Deis, L., & Heywang, M. (2005). Precision viticulture and water status, mapping the pre-dawn water potential to define within vineyard zones. In H. R. Shultz (Ed.), Proceedings of 14th GESCO congress, Geisenheim, Germany: Groupe d'Etudes des systèmes de Conduite de la Vigne, pp. 23–27.

  • Touya, G., Antoniou, V., Olteanu-Raimond, A. M., & Van Damme, M. D. (2017). Assessing Crowdsourced POI quality: Combining methods based on reference data, history, and spatial relations. ISPRS International Journal of Geo-Information, 6(3), 80.

    Article  Google Scholar 

  • Van Leeuwen, C., & Seguin, G. (1994). Incidences de l’alimentation en eau de la vigne, appréciée par l’état hydrique du feuillage, sur le développement de l’appareil végétatif et la maturation du raisin (Effects of the vine’s water supply, assessed by the water status of the foliage, on the development of the vegetative system and the ripening of the grapes). Journal International Des Sciences De La Vigne et Du Vin, 28(2), 81–110.

    CAS  Google Scholar 

  • Van Leeuwen, C., Roby, J. P., & De Rességuier, L. (2018). Soil-Related Terroir Factors : A Review. Oeno One, 52(2), 173–188.

    Article  Google Scholar 

  • Vieira, S. R., Tillotson, P. M., Biggar, J. W., & Nielsen, D. R. (1997). Scaling of semivariograms and the kriging estimation of field-measured properties. Revista Brasileira de Ciência do Solo, 21, 525–533.

    Article  Google Scholar 

  • Willwerth, J.J. and Reynolds, A.G. (2020). Spatial variability in Ontario Riesling Vineyards : I . Soil , vine water status and vine performance. Oeno One, 54(2), 327–49.

  • Yzarra, W., Sanabria, J., Cáceres, H., Solis, O., & Lhomme, J. P. (2015). Impact of climate change on some grapevine varieties grown in Peru for Pisco production. Oeno One, 49(2), 103–112.

    Article  Google Scholar 

  • Zufferey, V., Spring, J-L., Verdenal, T., Dienes, A., Belcher, S., Lorenzini, F., et al. (2017). The influence of water stress on plant hydraulics, gas exchange, berry composition and quality of Pinot Noir wines in Switzerland. Oeno One, 51(1)

Download references

Acknowledgements

The authors would like to thank the “Institut Français de la Vigne et du Vin” for their involvement throughout the development of the application. We also thank the “Chambres d’Agriculture” who participated in the test during the 2018 season.

Funding

The Occitanie region financially supported this work in the framework of the crowd-viti project (repere project). The lead author’s PhD project is supported by the French National Research Agency under the Investments for the Future Program (ANR-16-CONV-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pichon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichon, L., Brunel, G., Payan, J.C. et al. ApeX-Vigne: experiences in monitoring vine water status from within-field to regional scales using crowdsourcing data from a free mobile phone application. Precision Agric 22, 608–626 (2021). https://doi.org/10.1007/s11119-021-09797-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-021-09797-9

Keywords

Navigation