Skip to main content
Log in

Modulational instability and dynamics of discrete rational soliton and mixed interaction solutions for a higher-order nonlinear self-dual network equation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, the higher-order nonlinear self-dual network equation is investigated. Firstly, an integrable lattice hierarchy associated with this equation is constructed from a discrete matrix spectral problem without the denominator. Secondly, the condition of modulational instability for this equation is given. Thirdly, the infinitely many conservation laws are constructed on the basis of its new Lax representation. Finally, the discrete generalised \((m, N-m)\)-fold Darboux transformation (DT) with non-zero constant as seed solution is used to derive new rational soliton (RS) and mixed interaction solutions. As an application, RS solutions can be obtained by the discrete generalised \((1, N-1)\)-fold DT (i.e., generalised \((m, N-m)\)-fold DT with \(m=1\)), and mixed interaction solutions of the usual sech-type soliton (US) and RS can be derived by the discrete generalised \((2, N-2)\)-fold DT (i.e., generalised \((m, N-m)\)-fold DT with \(m=2\)). We also perform the numerical simulations for such soliton solutions to explore their dynamical behaviours. Results given in this paper may have some prospective applications for understanding the propagation of electrical signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A M Wazwaz, Pramana – J. Phys. 87: 68 (2016)

    Article  ADS  Google Scholar 

  2. D W Zuo, Appl. Math. Lett. 79, 182 (2018)

    Article  MathSciNet  Google Scholar 

  3. H P Chai, B Tian, J Chai and Z Du, Pramana – J. Phys. 92: 9 (2019)

    Article  ADS  Google Scholar 

  4. M Toda, Theory of nonlinear lattices (Springer, Berlin, 1989)

    Book  Google Scholar 

  5. W X Ma, Physica A 343, 219 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. W X Ma and X X Xu, J. Phys. A: Math. Gen. 37, 1323 (2004)

    Article  ADS  Google Scholar 

  7. D J Kaup, Math. Comput. Simulat. 69, 322 (2005)

    Article  Google Scholar 

  8. M J Ablowitz and J F Ladik, Stud. Appl. Math. 57, 1 (1977)

    Article  Google Scholar 

  9. M J Ablowitz and J F Ladik, Stud. Appl. Math. 55, 213 (1976)

    Article  Google Scholar 

  10. X G Geng, Acta Math. Sci. 9, 21 (1989)

    Article  Google Scholar 

  11. X Y Wen, J. Phys. Soc. Jpn. 81, 114006 (2012)

    Article  ADS  Google Scholar 

  12. M Wadati, Prog. Theor. Phys. Suppl. 59, 36 (1976)

    Article  ADS  Google Scholar 

  13. M Wadati and M Watanabe, Prog. Theor. Phys. 57, 808 (1977)

    Article  ADS  Google Scholar 

  14. A Ankiewicz, N Akhmediev and J M Soto-Crespo, Phys. Rev. E 82, 026602 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. A Ankiewicz, N Akhmediev and F Lederer, Phys. Rev. E 83, 056602 (2011)

    Article  ADS  Google Scholar 

  16. R Hirota and K Suzuki, J. Phys. Soc. Jan. 28, 1366 (1970)

    Article  ADS  Google Scholar 

  17. R Hirota, J. Phys. Soc. Jpn. 35, 289 (1973)

    Article  ADS  Google Scholar 

  18. M J Ablowitz and J F Ladik, J. Math. Phys. 16, 598 (1975)

    Article  ADS  Google Scholar 

  19. X G Geng, H H Dai and C W Cao, J. Math. Phys. 44, 4573 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. X J Zhao, R Guo and H Q Hao, Appl. Math. Lett. 75, 114 (2018)

    Article  MathSciNet  Google Scholar 

  21. F J Yu and S Feng, Math. Method Appl. Sci. 40, 5515 (2017)

    Article  ADS  Google Scholar 

  22. X Y Wen and D S Wang, Wave Motion 79, 84 (2018)

    Article  MathSciNet  Google Scholar 

  23. X Y Wen and Y Chen, Pramana – J. Phys. 91: 23 (2018)

    Article  ADS  Google Scholar 

  24. H T Wang and X Y Wen, Pramana – J. Phys. 92: 10 (2019)

    Article  ADS  Google Scholar 

  25. X Y Wen, Z Yan and B A Malomed, Chaos 26, 123110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. N Liu, X Y Wen and L Xu, Adv. Differ. Equ. 2018, 289 (2018)

    Article  Google Scholar 

  27. X Y Wen and Z Y Yan, J. Math. Phys. 59, 073511 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. X G Geng and H H Dai, J. Math. Anal. Appl. 327, 829 (2007)

    Article  MathSciNet  Google Scholar 

  29. C L Yuan, X Y Wen, H T Wang and Y Liu, Chin. J. Phys. 64, 45 (2020)

    Article  Google Scholar 

  30. L C Zhao and L M Ling, J. Opt. Soc. Am. B 33, 850 (2016)

    Article  ADS  Google Scholar 

  31. D Zhang and D Chen, Chaos Solitons Fractals 14, 573 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  32. J K Yang, Nonlinear waves in integrable and nonintegrable systems (SIAM, Philadelphia, 2010)

    Book  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by National Natural Science Foundation of China under Grant Nos 12071042 and 61471406, Beijing Natural Science Foundation under Grant No. 1202006 and Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University (QXTCP-B201704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yong Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, CL., Wen, XY., Wang, HT. et al. Modulational instability and dynamics of discrete rational soliton and mixed interaction solutions for a higher-order nonlinear self-dual network equation. Pramana - J Phys 95, 45 (2021). https://doi.org/10.1007/s12043-020-02065-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02065-x

Keywords

PACS

Navigation